NVIDIA.

Virtual GPU Software

User Guide

DU-06920-001 _v13.0 through 13.4 July 2022

Table of Contents

Chapter 1. Introduction to NVIDIA vGPU Software.........ccccooi 1
1.1, How NVIDIA vGPU Software Is Used.......cooiiiiiiii e 1
T.1.2. GPU Pass-TRIOUGN. ... 1
1.1.3. Bare-Metal Deployment. . .o 1
1.2. Primary Display Adapter Requirements for NVIDIA vGPU Software Deployments................ 2
1.3. NVIDIA vVGPU Software FeatUres.......ooiiiiii i, 3
1.3.1. GPU Instance Support on NVIDIA vVGPU Software.........ccoooiiiiiiiic 3
1.3.2. API Support on NVIDIA VEPU. ..ot 5
1.3.3. NVIDIA CUDA Toolkit and OpenCL Support on NVIDIA vGPU Software...........c.coccoooil, 5
1.3.4. Additional VWS FEatUMES......oiiiiiii i 9
1.3.5. NVIDIA GPU Cloud [NGC] Containers Support on NVIDIA vGPU Software...................... 9
1.3.6. NVIDIA GPU 0perator SUPPOt.. ..o 10
T.4. How this Guide IS OrganizZed. ..ot 10
Chapter 2. Installing and Configuring NVIDIA Virtual GPU Manager........cccoooeiiiiiiiiiinnnnns 12
2.1, About NVIDIA Virtual GPUS.......ii i 12
217 NVIDIA VGPU ArChItECUIE. ..ottt 12
2.1.1.7. Time-Sliced NVIDIA vGPU Internal Architecture...........cocooiiiiiiiii, 13
2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture...........ccccooiiiiiiiiii 14
2.1.2. ADOUL VIrtual GPU TyPeS.. oo 15
2.1.3. Virtual Display Resolutions for Q-series and B-series VGPUs.............ccccoooiiiii 17
2.1.4. Valid Virtual GPU Configurations on a Single GPU.........cccoiiiiiii 18
2.1.4.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU................... 18
2.1.4.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU..............cccoceoi. 19
2.1.5. GUEST VM SUPPOTE . 19
2.1.9.1. Windows GUEST VM SUPPOIt.....oiiiiiii i, 20
2.1.5.2. Linux GUEST VM SUPPOTt . i 20

2.2. Prerequisites for Using NVIDIA VGPU ... 20
2.3. Switching the Mode of a GPU that Supports Multiple Display Modes........c..cccoociiiiiiinn. 21
2.4. Switching the Mode of a Tesla M60 or M6 GPU........oooiiiiii 22
2.5. Installing and Configuring the NVIDIA Virtual GPU Manager for Citrix Hypervisor.............. 22
2.5.1. Installing and Updating the NVIDIA Virtual GPU Manager for Citrix Hypervisor........... 23
2.5.1.7. Installing the RPM package for Citrix Hypervisor.........cooociiiiiiiiiiiii 23
2.5.1.2. Updating the RPM Package for Citrix Hypervisor.........cccocoviiiiiiiiiiiiiiee 23
2.5.1.3. Installing or Updating the Supplemental Pack for Citrix Hypervisor...................... 24

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | ii

2.5.1.4. Verifying the Installation of the NVIDIA vGPU Software for Citrix Hypervisor

P aCKAGE. 26
2.5.2. Configuring a Citrix Hypervisor VM with Virtual GPU..........cccooiiiii 27
2.5.3. Setting vGPU Plugin Parameters on Citrix Hypervisor.........ccccooooiiiiiiiiiiii, 28
2.6. Installing the Virtual GPU Manager Package for Linux KVM. ... 29
2.7.Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux
KVM 08 RHV e 30
2.7.1. Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM or
R Y e 31
2.7.1.1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM
O RV e 31
2.7.1.2. Verifying the Installation of the NVIDIA vGPU Software for Red Hat Enterprise
Linux KVM 0or RHV ..o 32
2.7.2. Adding a vGPU to a Red Hat Virtualization (RHV) VM., 33
2.8. Since 13.1: Installing and Configuring the NVIDIA Virtual GPU Manager for Ubuntu.......... 34
2.8.1. Installing the NVIDIA Virtual GPU Manager for Ubuntu..........ccccooiiiii 35
2.8.1.1. Installing the Virtual GPU Manager Package for Ubuntu.........ccccoocoiiiiiiiin, 35
2.8.1.2. Verifying the Installation of the NVIDIA vGPU Software for Ubuntu........................ 36
2.9. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere............. 37
2.9.1. Installing and Updating the NVIDIA Virtual GPU Manager for vSphere.........c..ccccccooi. 38
2.9.1.1. Installing the NVIDIA Virtual GPU Manager Package for vSphere..............ccccoo.. 38
2.9.1.2. Updating the NVIDIA Virtual GPU Manager Package for vSphere.............c.ccooooin. 39
2.9.1.3. Verifying the Installation of the NVIDIA vGPU Software Package for vSphere...... 40
2.9.2. Configuring VMware vMotion with vGPU for VMware vSphere..........ccccccooiiiiiiiiinn, 41
2.9.3. Changing the Default Graphics Type in VMware vSphere 6.5 and Later....................... 42
2.9.4. Configuring a vSphere VM with NVIDIA VGPU. ..o 46
2.9.5. Setting vGPU Plugin Parameters on VMware vSphere.........ccocccooiiiiiiiiiii 49
2.9.6. Configuring a vSphere VM with VMware vSGA..........oooiii 50
2.10. Configuring the vGPU Manager for a Linux with KVM Hypervisor..........cccoocooiiiiiiiiicnnn o1
2.10.1. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor.................... o1
2.10.2. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor..........cccccooiiiiiiiiii, 52
2.10.2.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor........................ 52
2.10.2.2. Creating an NVIDIA vGPU that Supports SR-10V on a Linux with KVM
H Y PO VIS O . e 54
2.10.3. Adding One or More vGPUs to a Linux with KVM Hypervisor VM.............occoiin. 57

2.10.3.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using virsh 57

2.10.3.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using the
QEMU Command LINe. .. o 58

2.10.4. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor...........cc.ccooen 59

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | iii

2.10.5. Deleting a vGPU on a Linux with KVM Hypervisor.........ccccooiiiiiiiii 60

2.10.6. Preparing a GPU Configured for Pass-Through for Use with vGPU............................ 61
2.10.7. NVIDIA vGPU Information in the sysfs File System.........cccooviiiiiiiiii 62
2.11. Configuring a GPU for MIG-Backed VGPUS.........cc.oooiiiiiiii e, 69
2.11.1. Enabling MIG Mode for @ GPU.. ..o 65
2.11.2. Creating GPU Instances on a MIG-Enabled GPU............ccccoiiiii 66
2.11.3. Optional: Creating Compute Instances in a GPU instance.........cccccooeiiiiiiiiiiiiiin 67
2.12. Disabling MIG Mode for One or More GPUS........c.ooiiiiiiiii e 69
2.13. Disabling and Enabling ECC MemMOry......coooiiiiii e 70
2.13.1. Disabling ECC MmOy . ..o 71
2.13.2. Enabling ECC MEMIOIY ..ot 72
Chapter 3. Using GPU Pass-Through............ 74
3.1. Display Resolutions for Physical GPUS..........cociiiiii i 75
3.2. Using GPU Pass-Through on Citrix HypervisSor........ocoiiiiiiiiiiici e, 76
3.2.1. Configuring a VM for GPU Pass Through by Using XenCenter.........c.cccoocoiviiiiiiin. 76
3.2.2. Configuring a VM for GPU Pass Through by USiNg X€.......cccoooviiiiiiiiiiiiiiiiiee 77
3.3. Using GPU Pass-Through on Red Hat Enterprise Linux KVM or Ubuntu............cccccoeie. 78
3.3.1. Configuring a VM for GPU Pass-Through by Using Virtual Machine Manager (virt-
RaF=TaE= o =Y o FO R 78
3.3.2. Configuring a VM for GPU Pass-Through by Using virsh..........cccccoeiiiiiiiiii, 79
3.3.3. Configuring a VM for GPU Pass-Through by Using the QEMU Command Line............. 80
3.3.4. Preparing a GPU Configured for vGPU for Use in Pass-Through Mode........................ 81
3.4. Using GPU Pass-Through on Microsoft Windows Server..........cccoociiiiiiiiiiiiii 83
3.4.1. Assigning a GPU to a VM on Microsoft Windows Server with Hyper-V......................... 84
3.4.2. Returning a GPU to the Host OS from a VM on Windows Server with Hyper-V............. 85
3.5. Using GPU Pass-Through on VMware VSphere..........cooiiiiiiiiic 86
Chapter 4. Installing the NVIDIA vGPU Software Graphics Driver.........coccciviiveiieininnnee. 88
4.1. Installing the NVIDIA vGPU Software Graphics Driver on Windows..........c.coocoviiiiiiiicne. 88
4.2. Installing the NVIDIA vGPU Software Graphics Driver on LINUX......occoooiiiiiiiii, 90
4.3. Disabling the Nouveau Driver for NVIDIA Graphics Cards........cccccooiiiiiiiiiiiiii, 92
4.4. Disabling the Wayland Display Server Protocol for Red Hat Enterprise LinuX.................... 93
Chapter 5. Licensing an NVIDIA VGPU... ... 94
5.1. Configuring a Licensed Client of NVIDIA License System........ccocoiiiiiiiiiiiiiiii 94
5.1.1. Configuring a Licensed Client on WiINdOWS..........oocciiiiiiiiiii e 95
5.1.2. Configuring a Licensed Client on LiNUX.....ccooiiiiiiiiiiii e 96
5.1.3. Verifying the NVIDIA vGPU Software License Status of a Licensed Client.................... 98
5.2. Licensing NVIDIA vGPU from the Legacy License Server.........ccooioiiiiiiiiiiiiiie 99
5.2.1. Licensing an NVIDIA VGPU on WINAOWS.cociiiiiiiii e 99

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | v

5.2.2. Licensing an NVIDIA VGPU 0N LiNUX...iiiiiiiiiiii e 107

Chapter 6. Modifying a VM's NVIDIA vGPU Configuration..............ceeeeiiiiiiiiiiiiiiiiiieieeeeee. 103
6.1. Removing a VM’s NVIDIA vGPU Configuration..........ccccooiiiiiiiiiiii e 103
6.1.1. Removing a Citrix Virtual Apps and Desktops VM's vGPU configuration..................... 103
6.1.1.1. Removing a VM's vGPU configuration by using XenCenter...........cccccooiiiiiiinn. 103
6.1.1.2. Removing a VM's vGPU configuration by USiNg X€.......ccccoovviiiiiiiiiiiiiiiiice 104
6.1.2. Removing a vSphere VM's vGPU Configuration..........ccoocoiiiiiiiiiiiiiiccc e 104
6.2. Modifying GPU Allocation PoliCY......cooiiiiii i 105
6.2.1. Modifying GPU Allocation Policy on Citrix Hypervisor..........ccocioiiiiiiiiiiiii 105
6.2.1.7. Modifying GPU Allocation Policy by USING X€.....ccccoviiiiiiiiiiiiiiiie 105
6.2.1.2. Modifying GPU Allocation Policy GPU by Using XenCenter...........ccccoooiiiiiinnnn. 106
6.2.2. Modifying GPU Allocation Policy on VMware vSphere..........coccoooiiiiiiiiii 106
6.3. Migrating a VM Configured with VGPU ... 109
6.3.1. Migrating a VM Configured with vVGPU on Citrix Hypervisor.........ccccooivviiiiiiiiii 110
6.3.2. Migrating a VM Configured with vGPU on VMware vSphere..........ccccccoiiiiiiiii, 11
6.3.3. Suspending and Resuming a VM Configured with vGPU on VMware vSphere............. 113
6.4. Modifying a MIG-Backed vGPU's Configuration..........ccooioiiiiiiiiiei e 113
6.5. Enabling Unified Memory for @ VEPU. ... 116
6.5.1. Enabling Unified Memory for a vGPU on Citrix Hypervisor...........ccccooviiiiiiiiiin 116
6.5.2. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM.................... 116
6.5.3. Enabling Unified Memory for a vVGPU on VMware vSphere.........c.cocooiiiiiiiiii, 116
6.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA VGPU...........cooooiiiii. 117
6.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA VGPU.........ccocoiiiiiiii 117
6.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA VGPU........ccccooiiiiiiiiii, 118
6.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features........cccoocciiviiiiiiiiiii, 118
6.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are
ENabled. . 119
6.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU....... 119
6.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vVGPU VM. 119
Chapter 7. Monitoring GPU Performance.........cooiiiiiiiiiii e 121
7.1. NVIDIA System Management Interface nvidia-smi.......ccooooiiiiiiiiii 127
7.2. Monitoring GPU Performance from a HypervisSor........c.oooiiiiiiiiiiie e, 122
7.2.1. Using nvidia-smi to Monitor GPU Performance from a Hypervisor.............c.cccooo.. 122
7.2.1.1. Getting a Summary of all Physical GPUs in the System.........ccccoooiiiiii, 122
7.2.1.2. Getting a Summary of all vVGPUs in the System.........ccoooiiiiiii 123
7.2.1.3. Getting VEPU Details. ..o 124
7.2.1.4. Monitoring VGPU €NgiNe USBQE......ciiiiiiiiiiiiiieie et 124
7.2.1.5. Monitoring vGPU engine usage by applications..........ccoooiiiiiiiiiiiiicie 125

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | v

7.2.1.6. Monitoring ENCOder SESSIONS.....ciiiiiiiiii i 126

7.2.1.7. Monitoring Frame Buffer Capture (FBC) SesSions..........c.ccoovoooiiiiiiiiee. 127
7.2.1.8. Listing Supported VEPU TyYPES......ciiiiiiiiiiiee e 132
7.2.1.9. Listing the vGPU Types that Can Currently Be Created..........cccooviiiiiiiiiiinn, 133
7.2.2. Using Citrix XenCenter to monitor GPU performance..........ccccoocoiiiiiiiiii 133
7.3. Monitoring GPU Performance from a Guest VM. 134
7.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM. 135
7.3.2. Using Windows Performance Counters to monitor GPU performance....................... 136
7.3.3. Using NVWMI to monitor GPU performance...........ccoooiiiiiiiiiii i 137
Chapter 8. Changing Scheduling Behavior for Time-Sliced vGPUs...........cccccceiiiinninne 140
8.1. Scheduling Policies for Time-Sliced VEPUS..........cccoiiiiiiii e 140
8.2. Scheduler Time Slice for Time-Sliced VGPUS...........ccooiiiiiiiii 141
8.3. RMPVMRL REGISTIY KeY. . oo 141
8.4. Getting the Current Time-Sliced vGPU Scheduling Behavior for AL GPUs........................ 143
8.5. Changing the Time-Sliced vGPU Scheduling Behavior for AlL GPUs.........occooiiiiiiii 143
8.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs...........c.oocoo 144
8.7. Restoring Default Time-Sliced vGPU Scheduler Settings.........ccocooiiiiiiiiiii, 146
Chapter 9. TroubleShOOting. ... 148
DT KMOWN ISSUBS .ttt 148
9.2, TroublesSho0tiNg STEPS. . ittt 148
9.2.1. Verifying the NVIDIA Kernel Driver Is Loaded..........cccooiiiiiiiiiiii 148
9.2.2. Verifying that nvidia-Smi WOrKS. ..ot 149
9.2.3. Examining NVIDIA kernel driver oUtPUL......occciiiiii 149
9.2.4. Examining NVIDIA Virtual GPU Manager Messages.........cccooviveiiiiieieaiiec e, 149
9.2.4.1. Examining Citrix Hypervisor vGPU Manager Messages..........cccccoovviiiiioiiciinn, 149
9.2.4.2. Examining Red Hat Enterprise Linux KVM vGPU Manager Messages.................. 150
9.2.4.3. Examining VMware vSphere vGPU Manager Messages.........ccccoooviviiiiiiiincinn 157

9.3. Capturing configuration data for filing a bug report. ..., 151
9.3.1. Capturing configuration data by running nvidia-bug-report.sh............cccccociii 191
9.3.2. Capturing Configuration Data by Creating a Citrix Hypervisor Status Report............. 152
Appendix A. Virtual GPU Types Reference........ccuueeiiiiiiiiiieee e 154
A.1. Virtual GPU Types for Supported GPUS.........ccooiiiii i 154
A.1.1. NVIDIA A100 PCle 40GB Virtual GPU Types.....ccooiiiiiiiiiii it 154
A.1.2. NVIDIA A100 HGX 40GB Virtual GPU TYPes.....cciiiiiiiiiiiiiece e 155
A.1.3. NVIDIA A100 PCle 80GB Virtual GPU Types......cccooiiiiiiiiiiiiiicce e 157
A.1.4. NVIDIA A100 HGX 80GB Virtual GPU Types.....ccooiiiiiiiiiiiiccc e 158
AT.5. NVIDIA ALD Virtual GPU TYPeS...uiiiiiiiiiie e 159
A.T.6. NVIDIA A30 Virtual GPU TYPeS....iiiiiiiioiie e, 163

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | i

AT.7. NVIDIA A16 Virtual GPU Types... ..o 164

A.1.8. NVIDIA ATO Virtual GPU TYPeS.....oiiiiiiiiiiiee e 167
A.1.9. NVIDIA RTX Ab000 Virtual GPU TYPeS....ooiiiiiioii et 170
A.1.10. NVIDIA RTX A5000 Virtual GPU TYPeS...c.iiiiiiiiiieicii e 174
A 11T, Tesla M0 VIirtual GPU TyYPeS.....oiiiiiiii i, 177
A1.12. Tesla M10 Virtual GPU TyPeS. ..o, 179
AT.13. Tesla M6 Virtual GPU TYPeS.....uiiiiiiiiii e 182
A.1.14. Tesla P100 PCle 12GB Virtual GPU Types.......cociiiiiiiiiciecc e 184
A.1.15. Tesla P100 PCle 16GB Virtual GPU Types.......cccoooiiiiiiiiii 187
A.1.16. Tesla P100 SXMZ Virtual GPU Types......ooiiiiiiiiii e 190
A1.17. Tesla P40 Virtual GPU TyPeS...oooiiiiiiii e, 193
AT.18. Tesla P6 Virtual GPU TYPeS. ..o 196
A.1.19. Tesla P4 Virtual GPU Types. ... 199
A1.20. Tesla T4 Virtual GPU TyPeS....ooiiiiiiio e 202
A.1.21. Tesla V100 SXM2 Virtual GPU TyPeS....ocoiiiiiiiiiiiiiic e 205
A.1.22. Tesla V100 SXM2 32GB Virtual GPU Types......cccoiiiiiiiiiiiiiiiitet e, 208
A.1.23. Tesla V100 PCle Virtual GPU TypPes....coooiiiiiiiiie e 211
A.1.24. Tesla V100 PCle 32GB Virtual GPU Types......ccciiiiiiiiic e 214
A.1.25. Tesla V100S PCle 32GB Virtual GPU TyPes.....ccooiiiiiiiiiiiiicce e 217
A.1.26. Tesla V100 FHHL Virtual GPU TyPes....oooiiiiiii i 220
A.1.27. Quadro RTX 8000 Virtual GPU TyPes......cciiiiiiiiiiiii e 223
A.1.28. Quadro RTX 8000 Passive Virtual GPU Types......cccoiiiiiiiiiiicicce 227
A.1.29. Quadro RTX 6000 Virtual GPU Types......cooiiiiiiiii i 230
A.1.30. Quadro RTX 6000 Passive Virtual GPU Types.......cccciiiiiiiiiiiiiie 233
A.2. Mixed Display Configurations for B-Series and Q-Series VGPUs..........cccooiiiiiiiii. 237
A.2.1. Mixed Display Configurations for B-Series VGPUS..........cccccoiiiiiiiiiii 237
A.2.2. Mixed Display Configurations for Q-Series vGPUs Based on the NVIDIA Maxwell
AT CRITECIUIE. .. 237
A.2.3. Mixed Display Configurations for Q-Series vGPUs Based on Architectures after
NVIDIA MaXWELL ..., 238
Appendix B. Allocation Strategies. ieiiiiiie e 239
B.T. NUMA CONSIAEratioNS. . ..ot 239
B.1.1. Obtaining Best Performance on a NUMA Platform with Citrix Hypervisor................. 240
B.1.2. Obtaining Best Performance on a NUMA Platform with VMware vSphere ESXi......... 240
B.2. Maximizing PerformanCe. ... 240
Appendix C. Configuring x11vnc for Checking the GPU in a Linux Server...................... 242
C.1. Configuring the Xorg Server on the LINUX Server.........ccoociiiiiiiii 243
C.2. Installing and Configuring x1Tvnc on the LinUX SErver.........cccooiiiiiiiiie 244

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | vii

C.3. Using a VNC Client to Connect to the Linux Server........cccoooiiiiiiiiii 245
Appendix D. Disabling NVIDIA Notification Icon for Citrix Published Application User

S T=ET] o] o - T PP PP PPPPPPRR 247

D.1. Disabling NVIDIA Notification Icon for All Users’ Citrix Published Application Sessions..249

D.2. Disabling NVIDIA Notification Icon for your Citrix Published Application User Sessions..249

Appendix E. Citrix HyperviSor BaSIiCS.....uuuuuiiiiiieaiiiiiieiiiiiee et a e 250
E.1. Opening @ domO shelli e 250
E.1.1. Accessing the domO shell through XenCenter........ccccoiiiiiiiiiiiiiie 250
E.1.2. Accessing the domO shell through an SSH client..........coiiii 251
E.2. Copying files t0 dOmMO. .. i i 251
E.2.1. Copying files by using an SCP client. ... 251
E.2.2. Copying files by using a CIFS-mounted file system.........cooociiiiiiiii, 252
E.3. Determining @ VM's UUID ..o 252
E.3.1. Determining a VM's UUID by using Xxe v =-liSt........coooiiiiiiiiii 253
E.3.2. Determining a VM's UUID by using XenCenter.........cooiiiiiiiiiiiie 253
E.4. Using more than two vCPUs with Windows client VMs.........ccoiiiiiii, 254
E.5. Pinning VMs to a specific CPU socket and COres......cccoviiiiiiiiiii e 254
E.6. Changing dom0 vCPU Default configuration...........cccoooiiiiiiiiii e, 255
E.6.1. Changing the number of domO VCPUS.........oooiiiiii 256
E.6.2. PINning dom0 VOPUS ..o 256
E.7. How GPU locality is determined...... ..o 256
Appendix F. Citrix Hypervisor vGPU Management.............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeee 257
F.1. Management objects for GPUS. ... 257
F 1.1 pgpu - Physical GPU ..o 257
F.1.1.1. Listing the pgpu Objects Present on a Platform..........cccoooiiiiii 257
F.1.1.2. Viewing Detailed Information About a pgpu Object.......cccooiiiiiiiiii, 258
F.1.1.3. Viewing physical GPUs in XenCenter. ..o, 258
F.1.2. vgpu-type - Virtual GPU TyPe.. ..o 259
F.1.2.1. Listing the vgpu-type Objects Present on a Platform..........cccoooiiiiiiin, 259
F.1.2.2. Viewing Detailed Information About a vgpu-type Object.......cc.cocooviiiiiiiii, 263
F.1.3. gpu-group - collection of physical GPUS...........cccooiiiiiiii 263
F.1.3.1. Listing the gpu-group Objects Present on a Platform..........ccccoiiiii, 263
F.1.3.2. Viewing Detailed Information About a gpu-group Object...........ccooiiiiiiin, 264
F1A vgpu - VIrtual GPU. oo, 264
F.2. Creating @ VOPU USING X€..ciiiiiiiiiieei e 264
F.3. Controlling VEGPU alloCation........oiiiiiii e 265
F.3.1. Determining the Physical GPU on Which a Virtual GPU is Resident............ccccocoe. 265
F.3.2. Controlling the vGPU types enabled on specific physical GPUs................cooooi, 266

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | viii

F.3.2.1. Controlling vGPU types enabled on specific physical GPUs by using XenCenter..266

F.3.2.2. Controlling vGPU Types Enabled on Specific Physical GPUs by Using xe............. 267

F.3.3. Creating vGPUs on Specific Physical GPUS...........ocoiiiiiiiie 268

F.4. Cloning VGPU-ENabled VMs... ..o 269
F.4.1. Cloning a vVGPU-enabled VM By USING X€.....ooiiiiiiiiiiiiii e 270
F.4.2. Cloning a vGPU-enabled VM by using XenCenter........cccoooiiiiiiiiiiiii 270
Appendix G. Citrix Hypervisor Performance TUNINgG........ccccoooiiiiii 271
G. 1. CItrIX HYPerVISOT TOOLS. ..ottt 271
G.2. UsING ReMOTE GraphiCS. . oot 271
G.2.7. Disabling Console VA ... 271

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | ix

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.

List of Figures

GPU Instances Configured with NVIDIA VGPU ... 4
NVIDIA VGPU System Archit@CtUre ..o 13
Time-Sliced NVIDIA vGPU Internal Architecture ..., 14
MIG-Backed NVIDIA vGPU Internal Architecture ... 15
Example Time-Sliced vGPU Configurations on Tesla M60 ..., 18
Example MIG-Backed vGPU Configurations on NVIDIA A100 PCle 40GB 19
NVIDIA vGPU Manager supplemental pack selected in XenCentercccooooiiiiin. 25
Successful installation of NVIDIA vGPU Manager supplemental pack ..o 26
Using Citrix XenCenter to configure a VM with a VGPU ..., 28
Shared default graphics tYPe ..o 43
Host graphics settings for VGPU ... VA
Shared graphiCs TYPE ..o 45
Graphics device settings for a physical GPU ..., 45
Shared direct graphiCs tYPe ..o 46
VM settings for VGPU ... e 48
Using XenCenter to configure a pass-through GPU ..., 77
NVIDIA driver installation ... 89
Verifying NVIDIA driver operation using NVIDIA Control Panelcccoccooviiiiiiiin 90
Update xorg.conf settings ... 92
Managing vGPU licensing in NVIDIA Control Panel ..., 100
Using XenCenter to remove a vGPU configuration froma VM ..., 104
Modifying GPU placement policy in XenCenter ..., 106
Breadth-first allocation scheme setting for vGPU-enabled VMs ... 107
Host graphics settings for VGPU ..., 108

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | x

Figure 25. Depth-first allocation scheme setting for vGPU-enabled VMs ..., 109
Figure 26. Using Citrix XenCenter to monitor GPU performancecccoooiiiiiiiiii 134

Figure 27. Using nvidia-smi from a Windows guest VM to get total resource usage by all

AP P CATIONS e 135
Figure 28. Using nvidia-smi from a Windows guest VM to get resource usage by individual

AP P CALIONS e 136
Figure 29. Using Windows Performance Monitor to monitor GPU performancec...c........ 137
Figure 30. Using WMI Explorer to monitor GPU performancec.ccccoooiiiiiiiiiiiiiiicce 138
Figure 31. Including NVIDIA logs in a Citrix Hypervisor status reportccccooeiiiiiiiiininn, 153
Figure 32. A NUMA Server Platform ..o 239
Figure 33. Connecting to the dom0 shell by using XenCenter ..., 251
Figure 34. Using XenCenter to determine a VM's UUID ... 254
Figure 35. Physical GPU display in XeNCenteroooiiiiiiii e 259
Figure 36. Editing a GPU’s enabled vGPU types using XenCenterccccooiiiiiiiiiiiiii, 267
Figure 37. Using a custom GPU group within XenCenter ... 269
Figure 38. Cloning a VM using XeNCeNter ..ot 270

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | xi

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | xii

Chapter 1. Introduction to NVIDIA
vGPU Software

NVIDIA vGPU software is a graphics virtualization platform that provides virtual machines
(VMs] access to NVIDIA GPU technology.

1.1. How NVIDIA vGPU Software Is Used

NVIDIA vGPU software can be used in several ways.

1.1.1. NVIDIA vGPU

NVIDIA Virtual GPU (vGPU) enables multiple virtual machines (VMs] to have simultaneous,
direct access to a single physical GPU, using the same NVIDIA graphics drivers that are
deployed on non-virtualized operating systems. By doing this, NVIDIA vGPU provides VMs with
unparalleled graphics performance, compute performance, and application compatibility,
together with the cost-effectiveness and scalability brought about by sharing a GPU among
multiple workloads.

For more information, see Installing and Configuring NVIDIA Virtual GPU Manager.

1.1.2. GPU Pass-Through

In GPU pass-through mode, an entire physical GPU is directly assigned to one VM, bypassing
the NVIDIA Virtual GPU Manager. In this mode of operation, the GPU is accessed exclusively by
the NVIDIA driver running in the VM to which it is assigned. The GPU is not shared among VMs.

For more information, see Using GPU Pass-Through.

1.1.3. Bare-Metal Deployment

In a bare-metal deployment, you can use NVIDIA vGPU software graphics drivers with vVWS and
vApps licenses to deliver remote virtual desktops and applications. If you intend to use Tesla
boards without a hypervisor for this purpose, use NVIDIA vGPU software graphics drivers, not
other NVIDIA drivers.

To use NVIDIA vGPU software drivers for a bare-metal deployment, complete these tasks:

1. Install the driver on the physical host.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 1

Introduction to NVIDIA vGPU Software

For instructions, see Installing the NVIDIA vGPU Software Graphics Driver.

2. License any NVIDIA vGPU software that you are using.

For instructions, see Virtual GPU Client Licensing User Guide.

3. Configure the platform for remote access.

To use graphics features with Tesla GPUs, you must use a supported remoting solution,
for example, RemoteFX, Citrix Virtual Apps and Desktops, VNC, or similar technology.

4. Use the display settings feature of the host OS to configure the Tesla GPU as the primary
display.
NVIDIA Tesla generally operates as a secondary device on bare-metal platforms.

0. If the system has multiple display adapters, disable display devices connected through
adapters that are not from NVIDIA.

You can use the display settings feature of the host OS or the remoting solution for this
purpose. On NVIDIA GPUs, including Tesla GPUs, a default display device is enabled.

Users can launch applications that require NVIDIA GPU technology for enhanced user
experience only after displays that are driven by NVIDIA adapters are enabled.

1.2. Primary Display Adapter
Requirements for NVIDIA vGPU

Software Deployments

The GPU that is set as the primary display adapter cannot be used for NVIDIA vGPU
deployments or GPU pass through deployments. The primary display is the boot display of
the hypervisor host, which displays SBIOS console messages and then boot of the OS or
hypervisor.

Any GPU that is being used for NVIDIA vGPU deployments or GPU pass through deployments
must be set as a secondary display adapter.

[g] Note:

Citrix Hypervisor provides a specific setting to allow the primary display adapter to be used for
GPU pass through deployments.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 2

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Introduction to NVIDIA vGPU Software

© ‘scursid-vgpu-4 (CH B.2: VM 10.31.223.30-39)' Properties ? s
r +
i E "".I-I HEH _
-: Cu‘.:'l:um Fields Placement policy
F Set a placement pobicy for assigning ViMs to GPUs to achieve either maximum densidy or maomum pedormance.
b Aerts
When centrol domain me @ Maximum density: put as many Vs as possible on the same GPU
| 4 F
[Ermail Oiptions O Maximum peformance: put VMs on as many GPUs as possible
None defmned
| @ Mubtipathing Integrated GPLI pass-threugh
o acive Choose whether you want thas server to uie the integrated GPU, When a server 15 using the integrated GPU, that
| 4 Log Destination GPU cannot be passed through to a VM,
i This server is currently using the integrated GPU.
@ Power On P

Duzabled
{®) This server will use the integrated GPU

Lo

Maarmurm density: Using t () This server will mot use the mnitegrated GPU
5 5.1 Live Patching [

chabled

| Ay Metwork Options
| s \--.-"- INCopING desabled

| g Clustering

Only the following GPUs are supported as the primary display adapter:
> Tesla M6

» Quadro RTX 6000

» Quadro RTX 8000

All other GPUs that support NVIDIA vGPU software cannot function as the primary display
adapter because they are 3D controllers, not VGA devices.

If the hypervisor host does not have an extra graphics adapter, consider installing a low-
end display adapter to be used as the primary display adapter. If necessary, ensure that the
primary display adapter is set correctly in the BIOS options of the hypervisor host.

1.3. NVIDIA vGPU Software Features

NVIDIA vGPU software includes VWS, vCS, vPC, and vApps.

1.3.1. GPU Instance Support on NVIDIA vGPU

Software

NVIDIA vGPU software supports GPU instances on GPUs that support the Multi-Instance GPU
(MIG) feature in NVIDIA vGPU and GPU pass through deployments. MIG enables a physical
GPU to be securely partitioned into multiple separate GPU instances, providing multiple users
with separate GPU resources to accelerate their applications.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 3

Introduction to NVIDIA vGPU Software

In addition to providing all the benefits of MIG, NVIDIA vGPU software adds virtual machine
security and management for workloads. Single Root 1/0 Virtualization (SR-10V] virtual
functions enable full IOMMU protection for the virtual machines that are configured with
vGPUs.

Figure 1 shows a GPU that is split into three GPU instances of different sizes, with each
instance mapped to one vGPU. Although each GPU instance is managed by the hypervisor
host and is mapped to one vGPU, each virtual machine can further subdivide the compute
resources into smaller compute instances and run multiple containers on top of them in
parallel, even within each vGPU.

Figure 1. GPU Instances Configured with NVIDIA vGPU
Virtual Machine Virtual Machine Virtual Machine
3 parallel CUDA containers / processes 1 CUDA container/process 1 CUDA process
App il A L A App i Amp
a I | Hypervisor | . |

GPC

Compute Compute Compute
Instance Instance Instance Instance Instance

Memory Memory Memory

GPU Instance 4g.20gb GPU Instance 2g.10gb GPU Instance

vGPU (SR-I0OV Virtual Function) vGPU vGPU

NVIDIA vGPU software supports a single-slice MIG-backed vGPU with DEC, JPG, and OFA
support. Only one MIG-backed vGPU with DEC, JPG, and OFA support can reside on a GPU.
The instance can be placed identically to a single-slice instance without DEC, JPG, and OFA
support.

Not all hypervisors support GPU instances in NVIDIA vGPU deployments. To determine if your
chosen hypervisor supports GPU instances in NVIDIA vGPU deployments, consult the release
notes for your hypervisor at NVIDIA Virtual GPU Software Documentation.

NVIDIA vGPU software supports GPU instances only with NVIDIA Virtual Compute Server and
Linux guest operating systems.

To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG mode
enabled and GPU instances must be created and configured on the physical GPU. For more

information, see Configuring a GPU for MIG-Backed vGPUs. For general information about the
MIG feature, see: NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 4

https://docs.nvidia.com/grid/13.0/
http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Introduction to NVIDIA vGPU Software

1.3.2. APl Support on NVIDIA vGPU

NVIDIA vGPU includes support for the following APlIs:

» Open Computing Language (OpenCL" software) 3.0

» OpenGL® 4.6

» Vulkan®1.2

» DirectX 11

» DirectX 12 (Windows 10)

» Direct2D

» DirectX Video Acceleration (DXVA)

» NVIDIA® CUDA® 11.4

» NVIDIA vGPU software SDK (remote graphics acceleration)

» NVIDIA RTX (on GPUs based on the NVIDIA Volta graphic architecture and later
architectures)

Note: These APIs are backwards compatible. Older versions of the APl are also supported.

1.3.3. NVIDIA CUDA Toolkit and OpenCL Support on
NVIDIA vGPU Software

NVIDIA CUDA Toolkit and OpenCL are supported with NVIDIA vGPU only on a subset of vGPU
types and supported GPUs.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit 11.4 Documentation.

[g] Note:

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation
methods by installing CUDA from a distribution-independent runfile package. Do not install
CUDA from a distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is
installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see NVIDIA CUDA Installation Guide for Linux.

OpenCL and CUDA Application Support
OpenCL and CUDA applications are supported on the following NVIDIA vGPU types:

» The 8Q vGPU type on Tesla M6, Tesla M10, and Tesla M60 GPUs
» All Q-series vGPU types on the following GPUs:

> NVIDIA A10

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 5

https://docs.nvidia.com/cuda/archive/11.4.0/
http://docs.nvidia.com/cuda/archive/11.4.0/pdf/CUDA_Installation_Guide_Linux.pdf

Introduction to NVIDIA vGPU Software

NVIDIA A16
NVIDIA A4O
NVIDIA RTX A5000
NVIDIA RTX A6000
Tesla P4

Tesla P6

Tesla P40

Tesla P100 SXM2 16 GB
Tesla P100 PCle 16 GB
Tesla P100 PCle 12 GB
Tesla V100 SXM2

Tesla V100 SXM2 32GB
Tesla V100 PCle

Tesla V100 PCle 32GB
Tesla V100S PCle 32GB
Tesla V100 FHHL

Tesla T4

Quadro RTX 6000
Quadro RTX 6000 passive
Quadro RTX 8000
Quadro RTX 8000 passive
» All C-series vGPU types

vV vV vV vV vV vV v vV vV vV vV vV v vV vV v vV v v Vv Y

NVIDIA CUDA Toolkit Development Tool Support
NVIDIA vGPU supports the following NVIDIA CUDA Toolkit development tools on some GPUs:
» Debuggers:

» CUDA-GDB

» Compute Sanitizer
» Profilers (supported on MIG-backed vGPUs since 13.1):

» The Activity, Callback, and Profiling APIs of the CUDA Profiling Tools Interface (CUPTI)

Other CUPTI APls, such as the Event and Metric APIls, are not supported.
NVIDIA Nsight" Compute

NVIDIA Nsight Systems

NVIDIA Nsight plugin

NVIDIA Nsight Visual Studio plugin

vV v v Vv

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 6

Introduction to NVIDIA vGPU Software

Other CUDA profilers, such as nvprof and NVIDIA Visual Profiler, are not supported.

These tools are supported only in Linux guest VMs.

When unified memory is enabled for a VM, NVIDIA CUDA Toolkit profilers are disabled.

@ Note: By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If used,
you must enable NVIDIA CUDA Toolkit development tools individually for each VM that requires
them by setting vGPU plugin parameters. For instructions, see Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA vGPU.

The following table lists the GPUs on which NVIDIA vGPU supports these debuggers and

profilers.

GPU vGPU Mode Debuggers Profilers
NVIDIA A10 Time-sliced # 13.0 only: -
Since 13.1: #
NVIDIA A16 Time-sliced # 13.0 only: -
Since 13.1: #
NVIDIA A30 Time-sliced # #
MIG-backed # 13.0 only: -
Since 13.1: #
NVIDIA A40 Time-sliced # 13.0 only: -
Since 13.1: #
NVIDIA A100 HGX 40GB | Time-sliced # #
MIG-backed # 13.0 only: -
Since 13.1: #
NVIDIA A100 PCle 40GB | Time-sliced # #
MIG-backed # 13.0 only: -
Since 13.1: #
NVIDIA A100 HGX 80GB | Time-sliced # #
MIG-backed # 130 only: -
Since 13.1: #
NVIDIA A100 PCle 80GB | Time-sliced # #
MIG-backed # 13.0 only: _

Virtual GPU Software

DU-06920-001 _v13.0 through 13.4 | 7

Introduction to NVIDIA vGPU Software

GPU vGPU Mode Debuggers Profilers
Since 13.1: #

NVIDIA RTX A5000 Time-sliced # 13.0 only: -
Since 13.1: #

NVIDIA RTX A6000 Time-sliced # 13.0 only: -
Since 13.1: #

Tesla T4 Time-sliced # #

Quadro RTX 6000 Time-sliced # #

Quadro RTX 6000 Time-sliced # #

passive

Quadro RTX 8000 Time-sliced # #

Quadro RTX 8000 Time-sliced # #

passive

Tesla V100 SXM2 Time-sliced # #

Tesla V100 SXM2 32GB | Time-sliced # #

Tesla V100 PCle Time-sliced # #

Tesla V100 PCle 32GB Time-sliced # #

Tesla V100S PCle 32GB | Time-sliced # #

Tesla V100 FHHL Time-sliced # #

Feature is supported

- Feature is not supported

Supported NVIDIA CUDA Toolkit Features
NVIDIA vGPU supports the following NVIDIA CUDA Toolkit features if the vGPU type, physical

GPU, and the hypervisor software version support the feature:
» Error-correcting code (ECC) memory

» Peer-to-peer CUDA transfers over NVLink

S Note: To determine the NVLink topology between physical GPUs in a host or vGPUs
assigned to a VM, run the following command from the host or VM:

$ nvidia-smi topo -m

» GPUDirect® technology remote direct memory access (RDMA)

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 8

Introduction to NVIDIA vGPU Software

> Unified Memory

S Note: Unified memory is disabled by default. If used, you must enable unified memory
individually for each vGPU that requires it by setting a vGPU plugin parameter. For
instructions, see Enabling Unified Memory for a vGPU.

Dynamic page retirement is supported for all vGPU types on physical GPUs that support ECC
memory, even if ECC memory is disabled on the physical GPU.

NVIDIA CUDA Toolkit Features Not Supported by NVIDIA vGPU
NVIDIA vGPU does not support the following NVIDIA CUDA Toolkit features:

» GPUDirect technology storage
» GPU context switch trace
» NVIDIA Nsight Graphics

S Note: These features, except GPUDirect technology storage, are supported in GPU pass-
through mode and in bare-metal deployments.

1.3.4. Additional vWS Features

In addition to the features of vPC and vApps, VWS provides the following features:
» Workstation-specific graphics features and accelerations

» Certified drivers for professional applications

» GPU pass through for workstation or professional 3D graphics

In pass-through mode, VWS supports multiple virtual display heads at resolutions up to 8K
and flexible virtual display resolutions based on the number of available pixels. For details,
see Display Resolutions for Physical GPUs.

» 10-bit color for Windows users. (HDR/10-bit color is not currently supported on Linux,
NVFBC capture is supported but deprecated.)

1.3.5. NVIDIA GPU Cloud (NGC] Containers Support
on NVIDIA vGPU Software

NVIDIA vGPU software supports NGC containers in NVIDIA vGPU and GPU pass-through
deployments on all supported hypervisors.

In NVIDIA vGPU deployments, the following vGPU types are supported only on GPUs based on
NVIDIA GPU architectures after the Maxwell architecture:

» All Q-series vGPU types
» All C-series vGPU types

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 9

Introduction to NVIDIA vGPU Software

In GPU pass-through deployments, all GPUs based on NVIDIA GPU architectures after the
NVIDIA Maxwell™ architecture that support NVIDIA vGPU software are supported.

The Ubuntu guest operating system is supported.

For more information about setting up NVIDIA vGPU software for use with NGC containers,
see Using NGC with NVIDIA Virtual GPU Software Setup Guide.

1.3.6. NVIDIA GPU Operator Support

NVIDIA GPU Operator simplifies the deployment of NVIDIA vGPU software on software
container platforms that are managed by the Kubernetes container orchestration engine. It
automates the installation and update of NVIDIA vGPU software graphics drivers for container
platforms running in guest VMs that are configured with NVIDIA vGPU.

NVIDIA GPU Operator uses a driver catalog published with the NVIDIA vGPU software graphics
drivers to determine automatically the NVIDIA vGPU software graphics driver version that is
compatible with a platform’s Virtual GPU Manager.

Any drivers to be installed by NVIDIA GPU Operator must be downloaded from the NVIDIA
Licensing Portal to a local computer. Automated access to the NVIDIA Licensing Portal by
NVIDIA GPU Operator is not supported.

NVIDIA GPU Operator supports automated configuration of NVIDIA vGPU software and
provides telemetry support through DCGM Exporter running in a guest VM.

NVIDIA GPU Operator is supported only on specific combinations of hypervisor software
release, container platform, vGPU type, and guest OS release. To determine if your
configuration supports NVIDIA GPU Operator with NVIDIA vGPU deployments, consult the
release notes for your chosen hypervisor at NVIDIA Virtual GPU Software Documentation.

For more information, see NVIDIA GPU Operator Overview on the NVIDIA documentation
portal.

1.4. How this Guide |s Organized

Virtual GPU Software User Guide is organized as follows:
» This chapter introduces the capabilities and features of NVIDIA vGPU software.

» Installing and Configuring NVIDIA Virtual GPU Manager provides a step-by-step guide to
installing and configuring vGPU on supported hypervisors.

» Using GPU Pass-Through explains how to configure a GPU for pass-through on supported
hypervisors.

» Installing the NVIDIA vGPU Software Graphics Driver explains how to install NVIDIA vGPU
software graphics driver on Windows and Linux operating systems.

» Licensing an NVIDIA vGPU explains how to license NVIDIA vGPU licensed products on
Windows and Linux operating systems.

» Modifying a VM's NVIDIA vGPU Configuration explains how to remove a VM's vGPU
configuration and modify GPU assignments for vGPU-enabled VMs.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 10

http://docs.nvidia.com/ngc/pdf/ngc-vgpu-setup-guide.pdf
https://docs.nvidia.com/grid/13.0/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/overview.html

Introduction to NVIDIA vGPU Software

» Monitoring GPU Performance covers performance monitoring of physical GPUs and virtual
GPUs from the hypervisor and from within individual guest VMs.

» Changing Scheduling Behavior for Time-Sliced vGPUs describes the scheduling behavior
of NVIDIA vGPUs and how to change it.

» Troubleshooting provides guidance on troubleshooting.

» Virtual GPU Types Reference provides details of each vGPU available from each supported
GPU and provides examples of mixed virtual display configurations for B-series and Q-
series VGPUs.

» Configuring x11vnc for Checking the GPU in a Linux Server explains how to use x11vnc
to confirm that the NVIDIA GPU in a Linux server to which no display devices are directly
connected is working as expected.

» Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions explains
how to ensure that the NVIDIA Notification Icon application does not prevent the Citrix
Published Application user session from being logged off even after the user has quit all ot

» Citrix Hypervisor Basics explains how to perform basic operations on Citrix Hypervisor to
install and configure NVIDIA vGPU software and optimize Citrix Hypervisor operation with
vGPU.

» Citrix Hypervisor vGPU Management covers vGPU management on Citrix Hypervisor.

» Citrix Hypervisor Performance Tuning covers vGPU performance optimization on Citrix
Hypervisor.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 11

Chapter 2. Installing and Configuring
NVIDIA Virtual GPU
Manager

The process for installing and configuring NVIDIA Virtual GPU Manager depends on the
hypervisor that you are using. After you complete this process, you can install the display
drivers for your guest OS and license any NVIDIA vGPU software licensed products that you are
using.

2.1. About NVIDIA Virtual GPUs
2.1.1. NVIDIA vGPU Architecture

The high-level architecture of NVIDIA vGPU is illustrated in Figure 2. Under the control of the
NVIDIA Virtual GPU Manager running under the hypervisor, NVIDIA physical GPUs are capable
of supporting multiple virtual GPU devices [vGPUs] that can be assigned directly to guest VMs.

Guest VMs use NVIDIA vGPUs in the same manner as a physical GPU that has been passed
through by the hypervisor: an NVIDIA driver loaded in the guest VM provides direct access
to the GPU for performance-critical fast paths, and a paravirtualized interface to the NVIDIA
Virtual GPU Manager is used for non-performant management operations.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 12

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 2. NVIDIA vGPU System Architecture
Hypervisor 1| Guest VM i| GuestVM |1 GuestVM
Ll 1 1 1 1
E uﬁ.pplications i uﬁ.pplicatiam i Uﬁupplicatiom
: - | - : -
L] i 1
L] i 1
L] i 1
L} i 1
L} i 1
: ~, : .-’\ : o
ﬁ G § N R § SN S 1
J} :] :
i A B Y
NVIDIA L i T
Physical GPU E Virtual GPU ; Virtual GPU 1| Virtual GPU
: ']

Each NVIDIA vGPU is analogous to a conventional GPU, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU's framebuffer is
allocated out of the physical GPU’s framebuffer at the time the vGPU is created, and the vGPU
retains exclusive use of that framebuffer until it is destroyed.

Depending on the physical GPU, different types of vGPU can be created on the vGPU:
» Onall GPUs that support NVIDIA vGPU software, time-sliced vGPUs can be created.

» Additionally, on GPUs that support the Multi-Instance GPU [MIG] feature, MIG-backed
vGPUs can be created. The MIG feature is introduced on GPUs that are based on the
NVIDIA Ampere GPU architecture.

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture

A time-sliced vVGPU is a vGPU that resides on a physical GPU that is not partitioned into
multiple GPU instances. All time-sliced vVGPUs resident on a GPU share access to the GPU’s
engines including the graphics (3D]), video decode, and video encode engines.

In a time-sliced vGPU, processes that run on the vGPU are scheduled to run in series.
Each vGPU waits while other processes run on other vGPUs. While processes are running
on a vGPU, the vGPU has exclusive use of the GPU's engines. You can change the default
scheduling behavior as explained in Changing Scheduling Behavior for Time-Sliced vGPUs.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 13

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 3. Time-Sliced NVIDIA vGPU Internal Architecture
Paravirtualized
Interface
v v v v
Hypervisor Guest VM . Guest VM . Guest VM

uhpplicatiﬂns uﬁ.pplicatiﬂns uﬁ.pplicatiam

A A L)
Direct GPU | | Direct GPU | | Direct GPU
Access] Access] Access
NVIDIA ¥ Y v
Physical GPU Virtual GPU Virtual GPU "Iul"lrtl.:al GPU
¥ Dedicated Dedicated Dedicated
Scheduling Framebuffer Framebuffer Framebuffer
i
i
i
| : : !
: GPU Engines
beemmmmmmn +| Graphics/ Video Video
Compute Decode Encode
2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture

A MIG-backed vGPU is a vGPU that resides on a GPU instance in a MIG-capable physical GPU.
Each MIG-backed vGPU resident on a GPU has exclusive access to the GPU instance’s engines,
including the compute and video decode engines.

In a MIG-backed vGPU, processes that run on the vGPU run in parallel with processes
running on other vGPUs on the GPU. Process run on all vGPUs resident on a physical GPU
simultaneously.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 14

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 4. MIG-Backed NVIDIA vGPU Internal Architecture
Paravirtualized
Interface
v v v v
Hypervisor Guest VM Guest VM . Guest VM

Applications uﬁ.pplicatiﬂns uApplicaﬁam

i) 4
Direct GPU Direct GPU | | Direct GPU
Access Access] Access
I T I
NVIDIA GPU Instance GPU Instance GPU Instance
Physical GPU ¥ ¥ L
Virtual GPU Virtual GPU Virtual GPU
Dedicated Dedicated Dedicated
Framebuffer Framebuffer Framebuffer
Compute Compute Compute
Video Video Video
Decode Decode Decode

2.1.2. About Virtual GPU Types

The number of physical GPUs that a board has depends on the board. Each physical GPU can
support several different types of virtual GPU (vGPU). vGPU types have a fixed amount of frame

buffer, number of supported display heads, and maximum resolutions’. They are grouped into
different series according to the different classes of workload for which they are optimized.
Each series is identified by the last letter of the vVGPU type name.

Series Optimal Workload

Q-series Virtual workstations for creative and technical professionals who require the
performance and features of Quadro technology

C-series Compute-intensive server workloads, such as artificial intelligence (Al], deep learning,

or high-performance computing (HPC)% 3

! NVIDIA vGPUs with less than 1 Gbyte of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

2 C-series vGPU types are NVIDIA Virtual Compute Server vGPU types, which are optimized for compute-intensive workloads. As
a result, they support only a single display head and do not provide Quadro graphics acceleration.

% The maximum number of NVIDIA Virtual Compute Server vGPUs is limited to eight vGPUs per physical GPU, irrespective of the
available hardware resources of the physical GPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 15

Installing and Configuring NVIDIA Virtual GPU Manager

Series Optimal Workload
B-series Virtual desktops for business professionals and knowledge workers
A-series App streaming or session-based solutions for virtual applications users®

The number after the board type in the vGPU type name denotes the amount of frame buffer
that is allocated to a vGPU of that type. For example, a vGPU of type A16-4C is allocated 4096
Mbytes of frame buffer on an NVIDIA A16 board.

Due to their differing resource requirements, the maximum number of vGPUs that can be
created simultaneously on a physical GPU varies according to the vGPU type. For example, an
NVDIA A16 board can support up to 4 A16-4C vGPUs on each of its two physical GPUs, for a
total of 16 vGPUs, but only 2 A16-8C vGPUs, for a total of 8 vGPUs.

When enabled, the frame-rate limiter (FRL] limits the maximum frame rate in frames per
second (FPS) for a vGPU as follows:

» For B-series vGPUs, the maximum frame rate is 45 FPS.

» For Q-series, C-series, and A-series vGPUs, the maximum frame rate is 60 FPS.

By default, the FRL is enabled for all GPUs. The FRL is disabled when the vGPU scheduling
behavior is changed from the default best-effort scheduler on GPUs that support alternative
vGPU schedulers. For details, see Changing Scheduling Behavior for Time-Sliced vGPUs. On
vGPUs that use the best-effort scheduler, the FRL can be disabled as explained in the release
notes for your chosen hypervisor at NVIDIA Virtual GPU Software Documentation.

@ Note:

NVIDIA vGPU is a licensed product on all supported GPU boards. A software license is required
to enable all vGPU features within the guest VM. The type of license required depends on the
vGPU type.

» Q-series VGPU types require a VWS license.

» C-series vGPU types require an NVIDIA Virtual Compute Server (vCS] license but can also
be used with a vWS license.

» B-series vGPU types require a vPC license but can also be used with a vWS license.

» A-series VGPU types require a vApps license.

~

The -1B4 and -2B4 vGPU types are deprecated in this release, and may be removed in a future release. In preparation for the
possible removal of these vGPU types, use the following vGPU types, which provide equivalent functionality:

» Instead of -1B4 vGPU types, use -1B vGPU types.

» Instead of -2B4 vGPU types, use -2B vGPU types.

With many workloads, -1B and -1B4 vGPUs perform adequately with only 2 2560x1600 virtual displays per vGPU. If you want

to use more than 2 2560x1600 virtual displays per vGPU, use a vGPU with more frame buffer, such as a -2B or -2B4 vGPU. For
more information, see NVIDIA GRID vPC Sizing Guide [PDF).

A-series NVIDIA vGPUs support a single display at low resolution to be used as the console display in remote application
environments such as RDSH and Citrix Virtual Apps and Desktops. The maximum resolution and number of virtual display
heads for the A-series NVIDIA vGPUs applies only to the console display. The maximum resolution of each RDSH or Citrix
Virtual Apps and Desktops session is determined by the remoting solution and is not restricted by the maximum resolution of
the vGPU. Similarly, the number of virtual display heads supported by each session is determined by the remoting solution and
is not restricted by the vGPU.

o

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 16

https://docs.nvidia.com/grid/13.0/

Installing and Configuring NVIDIA Virtual GPU Manager

For details of the virtual GPU types available from each supported GPU, see Virtual GPU Types
for Supported GPUs.

2.1.3. Virtual Display Resolutions for Q-series and
B-series vGPUs

Instead of a fixed maximum resolution per display, Q-series and B-series vGPUs support a
maximum combined resolution based on the number of available pixels, which is determined
by their frame buffer size. You can choose between using a small number of high resolution
displays or a larger number of lower resolution displays with these vGPUs.

The number of virtual displays that you can use depends on a combination of the following
factors:

» Virtual GPU series
» GPU architecture
» VvGPU frame buffer size

» Display resolution

S| Note: You cannot use more than the maximum number of displays that a vGPU supports even
if the combined resolution of the displays is less than the number of available pixels from the
vGPU. For example, because -0Q and -0B vGPUs support a maximum of only two displays, you
cannot use four 1280x1024 displays with these vGPUs even though the combined resolution of
the displays (6220800) is less than the number of available pixels from these vGPUs (8192000).

Various factors affect the consumption of the GPU frame buffer, which can impact the user
experience. These factors include and are not limited to the number of displays, display
resolution, workload and applications deployed, remoting solution, and guest OS. The ability
of a vGPU to drive a certain combination of displays does not guarantee that enough frame
buffer remains free for all applications to run. If applications run out of frame buffer, consider
changing your setup in one of the following ways:

» Switching to a vGPU type with more frame buffer
» Using fewer displays

» Using lower resolution displays

The maximum number of displays per vGPU listed in Virtual GPU Types for Supported GPUs
is based on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for B-
Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 17

Installing and Configuring NVIDIA Virtual GPU Manager

2.1.4. Valid Virtual GPU Configurations on a Single
GPU

Valid vGPU configurations on a single GPU depend on whether the vGPUs are time sliced or,
on GPUs that support MIG, are MIG-backed.

2.1.4.1. Valid Time-Sliced Virtual GPU Configurations on a
Single GPU

This release of NVIDIA vGPU supports only homogeneous time-sliced virtual GPUs. At any
given time, the virtual GPUs resident on a single physical GPU must be all of the same type.

However, this restriction doesn’t extend across physical GPUs on the same card. Different
physical GPUs on the same card may host different types of virtual GPU at the same time,
provided that the vGPU types on any one physical GPU are the same.

For example, a Tesla M60 card has two physical GPUs, and can support several types of virtual
GPU. Figure 5 shows the following examples of valid and invalid virtual GPU configurations on
Tesla M60:

» Avalid configuration with M60-2Q vGPUs on GPU 0 and M60-4Q vGPUs on GPU 1
» Avalid configuration with M60-1B vGPUs on GPU 0 and M60-2Q vGPUs on GPU 1
» Aninvalid configuration with mixed vGPU types on GPU 0

Figure 5. Example Time-Sliced vGPU Configurations on Tesla M60

| Tesla M60 |

| Physical GPU 0 | Physical GPU 1 |

Valid configuration with M&0-2Q vGPUs on GPU 0, M60-4Q vGPUs on GPU 1:
| me020 | me02q | me02q | Meo-2q | | M60-4Q | M60-4Q |

Valid configuration with M&0-1B vGPUs on GPU 0, M&60-20Q vGPUs on GPU 1:
|m1a{ mw{ m1a|m1a|m1ﬂ| m1a| | M60-20 | M60-2Q | M60-2Q | M60-2Q |

Invalid configuration with mixed vGPU types on GPU 0:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 18

Installing and Configuring NVIDIA Virtual GPU Manager

This release of NVIDIA vGPU supports both homogeneous and mixed MIG-backed virtual GPUs
based on the underlying GPU instance configuration.

For example, an NVIDIA A100 PCle 40GB card has one physical GPU, and can support several
types of virtual GPU. Figure 6 shows the following examples of valid homogeneous and mixed
MIG-backed virtual GPU configurations on NVIDIA A100 PCle 40GB.

A valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU
instances

A valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU
instances

A valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance, 1
A100-2-10C vGPU on a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a MIG.1g.5b
instance

Figure 6. Example MIG-Backed vGPU Configurations on NVIDIA A100
PCle 40GB

NVIDIA A100 PCle 40GB
Physical GPU 0

Valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU instances

A100-2-10C on A100-2-10C on A100-2-10C on
MIG.2g.10b MIG.2g.10b MIG.2g.10b
Valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU instances
A100-3-20C on A100-3-20C on
MIG. 3g.20b MIG. 3g.20b

Valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance, 1 A100-2-10C vGPU on
a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a MIG.1g.5b instance

A100-4-20C on A100-2-10C on A100-1-5C on
MIG.4g.20b MIG.2g.10b MIG.1g.5b

NVIDIA vGPU supports Windows and Linux guest VM operating systems. The supported vGPU
types depend on the guest VM 0S.

For details of the supported releases of Windows and Linux, and for further information on
supported configurations, see the driver release notes for your hypervisor at NVIDIA Virtual
GPU Software Documentation.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 19

https://docs.nvidia.com/grid/13.0/
https://docs.nvidia.com/grid/13.0/

Installing and Configuring NVIDIA Virtual GPU Manager

2.1.5.1. Windows Guest VM Support

Windows guest VMs are supported only on Q-series, B-series, and A-series NVIDIA vGPU
types. They are not supported on C-series NVIDIA vGPU types.

2.1.5.2. Linux Guest VM support

64-bit Linux guest VMs are supported only on Q-series, C-series, and B-series NVIDIA vGPU
types. They are not supported on A-series NVIDIA vGPU types.

2.2. Prerequisites for Using NVIDIA vGPU

Before proceeding, ensure that these prerequisites are met:
» You have a server platform that is capable of hosting your chosen hypervisor and NVIDIA
GPUs that support NVIDIA vGPU software.

» One or more NVIDIA GPUs that support NVIDIA vGPU software is installed in your server
platform.

» If you are using GPUs based on the NVIDIA Ampere architecture, the following BIOS
settings are enabled on your server platform:
» VT-D/IOMMU
» SR-I0V

» You have downloaded the NVIDIA vGPU software package for your chosen hypervisor,
which consists of the following software:

» NVIDIA Virtual GPU Manager for your hypervisor
» NVIDIA vGPU software graphics drivers for supported guest operating systems

» The following software is installed according to the instructions in the software vendor's
documentation:

» Your chosen hypervisor, for example, Citrix Hypervisor, Red Hat Enterprise Linux KVM,
Red Hat Virtualization (RHV], or VMware vSphere Hypervisor (ESXi)

» The software for managing your chosen hypervisor, for example, Citrix XenCenter
management GUI, or VMware vCenter Server

» The virtual desktop software that you will use with virtual machines (VMs] running
NVIDIA Virtual GPU, for example, Citrix Virtual Apps and Desktops, or VMware Horizon

S Note: If you are using VMware vSphere Hypervisor (ESXi), ensure that the ESXi host on
which you will configure a VM with NVIDIA vGPU is not a member of a fully automated
VMware Distributed Resource Scheduler (DRS) cluster. For more information, see
Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 20

Installing and Configuring NVIDIA Virtual GPU Manager

» AVM to be enabled with vGPU is created.

Note: All hypervisors covered in this guide support multiple vGPUs in a VM.
» Your chosen guest OS is installed in the VM.

For information about supported hardware and software, and any known issues for this
release of NVIDIA vGPU software, refer to the Release Notes for your chosen hypervisor:

» Virtual GPU Software for Citrix Hypervisor Release Notes

» Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes

» Virtual GPU Software for Ubuntu Release Notes

» Virtual GPU Software for VMware vSphere Release Notes

2.3. Switching the Mode of a GPU that
Supports Multiple Display Modes

Some GPUs support displayless and display-enabled modes but must be used in NVIDIA vGPU
software deployments in displayless mode.

The GPUs listed in the following table support multiple display modes. As shown in the table,
some GPUs are supplied from the factory in displayless mode, but other GPUs are supplied in
a display-enabled mode.

GPU Mode as Supplied from the Factory
NVIDIA A4Q Displayless

NVIDIA RTX A5000 Display enabled

NVIDIA RTX A6000 Display enabled

A GPU that is supplied from the factory in displayless mode, such as the NVIDIA A40 GPU,
might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the
displaymodeselector tool, which you can request from the NVIDIA Display Mode Selector
Tool page on the NVIDIA Developer website.

[g] Note:

Only the following GPUs support the displaymodeselector tool:
» NVIDIA A40

» NVIDIA RTX A5000

» NVIDIA RTX A6000

Other GPUs that support NVIDIA vGPU software do not support the displaymodeselector tool
and, unless otherwise stated, do not require display mode switching.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 21

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-ubuntu.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf
https://developer.nvidia.com/displaymodeselector
https://developer.nvidia.com/displaymodeselector

Installing and Configuring NVIDIA Virtual GPU Manager

2.4. Switching the Mode of a Tesla M60 or
Mé6 GPU

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires
GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU
might be in compute mode if it is an older Tesla M60 GPU or M6 GPU or if its mode has
previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the gpumodeswitch tool provided
with NVIDIA vGPU software releases. If you are unsure which mode your GPU is in, use the
gpumodeswitch tool to find out the mode.

[g] Note:

Only Tesla M60 and M6 GPUs support the gpumodeswitch tool. Other GPUs that support
NVIDIA vGPU do not support the gpumodeswitch tool and, except as stated in Switching the
Mode of a GPU that Supports Multiple Display Modes, do not require mode switching.

Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA Virtual Compute Server
vGPU types. Furthermore, vCS is not supported on any GPU on Citrix Hypervisor.

For more information, refer to gpumodeswitch User Guide.

2.5. Installing and Configuring the NVIDIA
Virtual GPU Manager for Citrix
Hypervisor

The following topics step you through the process of setting up a single Citrix Hypervisor VM
to use NVIDIA vGPU. After the process is complete, you can install the graphics driver for your
guest OS and license any NVIDIA vGPU software licensed products that you are using.

These setup steps assume familiarity with the Citrix Hypervisor skills covered in Citrix
Hypervisor Basics.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 22

http://docs.nvidia.com/grid/13.0/pdf/grid-gpumodeswitch-user-guide.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

2.5.1. Installing and Updating the NVIDIA Virtual
GPU Manager for Citrix Hypervisor

The NVIDIA Virtual GPU Manager runs in the Citrix Hypervisor dom0 domain. The NVIDIA
Virtual GPU Manager for Citrix Hypervisor is supplied as an RPM file and as a Supplemental
Pack.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you update
vGPU Manager to a release that is incompatible with the guest VM drivers, guest VMs will boot
with vGPU disabled until their guest vGPU driver is updated to a compatible version. Consult
Virtual GPU Software for Citrix Hypervisor Release Notes for further details.

2.5.1.1. Installing the RPM package for Citrix Hypervisor

The RPM file must be copied to the Citrix Hypervisor dom0 domain prior to installation (see
Copying files to dom0).

1. Use the rpm command to install the package:

[root@xenserver ~]# rpm -iv NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-470.141.05.x86_64.rpm

Preparing packages for installation...
NVIDIA-vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-470.141.05
[root@xenserver ~]#

2. Reboot the Citrix Hypervisor platform:

[root@xenserver ~]# shutdown -r now
Broadcast message from root (pts/l) (Fri Aug 12 14:24:11 2022):

The system is going down for reboot NOW!
[root@xenserver ~]#

2.5.1.2. Updating the RPM Package for Citrix Hypervisor

If an existing NVIDIA Virtual GPU Manager is already installed on the system and you want to
upgrade, follow these steps:

1. Shut down any VMs that are using NVIDIA vGPU.

2. Install the new package using the —U option to the rpm command, to upgrade from the
previously installed package:

[root@xenserver ~]# rpm -Uv NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-470.141.05.x86_64.rpm

Preparing packages for installation...
NVIDIA-vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-470.141.05
[root@xenserver ~]#

[g] Note:

You can query the version of the current NVIDIA Virtual GPU Manager package using the
rpm —gcommand:

[root@xenserver ~]# rpm —q NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-470.141.05
[root@xenserver ~]#

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 23

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

If an existing NVIDIA GRID package is already installed and you don’t
select the upgrade (-U) option when installing a newer GRID package, the
rpm command will return many conflict errors.

Preparing packages for installation...

file /usr/bin/nvidia-smi from install of NVIDIA-vGPU-NVIDIA-
vGPU-CitrixHypervisor-8.2-470.141.05.x86 64 conflicts with file from

package NVIDIA-vGPU-xenserver-8.2-470.129.04.x86 64

file /usr/lib/libnvidia-ml.so from install of NVIDIA-vGPU-NVIDIA-
vGPU-CitrixHypervisor-8.2-470.141.05.x86 64 conflicts with file from

package NVIDIA-vGPU-xenserver-8.2-470.129.04.x86 64

3. Reboot the Citrix Hypervisor platform:

[root@xenserver ~]# shutdown -r now
Broadcast message from root (pts/1l) (Fri Aug 12 14:24:11 2022):

The system is going down for reboot NOW!
[root@xenserver ~]#

2.5.1.3. Installing or Updating the Supplemental Pack for
Citrix Hypervisor

XenCenter can be used to install or update Supplemental Packs on Citrix Hypervisor hosts.

The NVIDIA Virtual GPU Manager supplemental pack is provided as an 1SO.

1. Select Install Update from the Tools menu.

2. Click Next after going through the instructions on the Before You Start section.

Click Select update or supplemental pack from disk on the Select Update section and
open NVIDIA's Citrix Hypervisor Supplemental Pack ISO.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 24

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 7. NVIDIA vGPU Manager supplemental pack selected in
XenCenter
f = - ——— 1
€3 Install Update o ®|[=]
a
& Choose an existing update to install or upload a new one 9
Before You Start Select Automated Updates, choose an update to be downloaded from Citrix, or browse your computer for
Select Update an update or supplemental pack file.
Select Servers Automated Updates
Upload XenCenter will download and install all current updates from Citrix, usually with only a single reboot at
the end.
Prechecks
Update Mode Download update from Citrix
Install Update Update Description Date v Web Page

Refresh List J { Restore Dismissed Updates J

@ Select update or supplemental pack from disk

. n Filename: NVIDIA-vGPU-xenserver-7.1-367 92386 _64.is0 -
CiTRIX e |

[<PreviousJ[Next > [[Cancel]

Click Next on the Select Update section.

5. In the Select Servers section select all the Citrix Hypervisor hosts on which the
Supplemental Pack should be installed on and click Next.

6. Click Next on the Upload section once the Supplemental Pack has been uploaded to all the
Citrix Hypervisor hosts.

7. Click Next on the Prechecks section.
Click Install Update on the Update Mode section.
9. Click Finish on the Install Update section.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 25

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 8. Successful installation of NVIDIA vGPU Manager supplemental
pack

=

| © sl vpase (=)= =
| =02
a Install the update o

Before You Start
Select Update

Select Servers =

Upload

Update NVIDIA-vGPU-xenserver-7.1-367.92 586_64.is0 was successfully installed

linstalling update NVIDIA-vgx-xenserver to localhost... done.

Prechecks

Update Mode

i ciTRIX’

2.5.1.4. Verifying the Installation of the NVIDIA vGPU

Software for Citrix Hypervisor Package

After the Citrix Hypervisor platform has rebooted, verify the installation of the NVIDIA vGPU
software package for Citrix Hypervisor.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by checking
for the NVIDIA kernel driver in the list of kernel loaded modules.

[root@xenserver ~]# lsmod | grep nvidia

nvidia 9522927 0

i2c _core 20294 2 nvidia,i2c 1801
[root@xenserver ~]#

2. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.

The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

[root@xenserver ~]# nvidia-smi
Fri Aug 12 18:46:50 2022

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |
| o o +

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 26

Installing and Configuring NVIDIA Virtual GPU Manager

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| + + |
| 0 Tesla M60 On | 00000000:05:00.0 Off | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
o o B et B e +
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
o o ———— - ——— +
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
fomm o o 1
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
o fmm o +
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| No running processes found |
o +

[root@xenserver ~]#

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs in
your system, see Troubleshooting for troubleshooting steps.

2.5.2. Configuring a Citrix Hypervisor VM with
Virtual GPU

To support applications and workloads that are compute or graphics intensive, you can add
multiple vGPUs to a single VM.

For details about which Citrix Hypervisor versions and NVIDIA vGPUs support the assignment
of multiple vGPUs to a VM, see Virtual GPU Software for Citrix Hypervisor Release Notes.

Citrix Hypervisor supports configuration and management of virtual GPUs using XenCenter,
or the xe command line tool that is run in a Citrix Hypervisor dom0 shell. Basic configuration
using XenCenter is described in the following sections. Command line management using xe
Is described in Citrix Hypervisor v6PU Management.

ote: If you are using Citrix Hypervisor 8.1 or later and need to assign plugin configuration
& N If ing Citrix H i 8.1orl d d ign plugi fig i
parameters, create vGPUs using the xe command as explained in Creating a vGPU Using xe.

1. Ensure the VM is powered off.

2. Right-click the VM in XenCenter, select Properties to open the VM's properties, and select
the GPU property.

The available GPU types are listed in the GPU type drop-down list:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 27

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 9. Using Citrix XenCenter to configure a VM with a vGPU

XenCenter [Sa=]
fle View Pool Sever VM Storage Templates Tools Help
) Back - @) Forward - | [Add New Server | B5! New Pool ¥8 New Storage 1 New VM | @) Start (3 Reboot ([} Suspend

Q| B Win7x64_ CUDA_OPENCL (2) (1) on 'xs-72' Logged inas: Loca root accourt |

2 XenCenter | | | | |

General | Memory |

B
8 s Cuon o EE I -
& s i cuon o,
LD::DaVi:::gs G | <N You can improve graphics performance by assigning a virtual graphics processing unit to this
5 Removable storag SNEra
B RHEL7.3
Ubuntu Xenial Xer| GPU type: Pass-through whole GPU [
B Win7x64_CUDA_OF Description: Pass-through whole GPU B
Windows10-RS1.1 Tags: (GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
Windows10-Rs2_1 o A Ttisessel o Me0-gAvirtual GPU (1 per GPU, 1280x1024, 1 display) en booted.
% localhost Folder: @ Iftherei GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays) e able to start
Operating System: (GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
Viralization d (GRID M60-20Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
- GPU (GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display)
BTG MnOielGR =
BIOS strings #, Advanced Options ‘GRID M60-18 virtual GPU (8 per GPU, 2560x1600, 4 displays)
copied: Optimize for general use (GRID M60-14 virtual GPU (8 per GPU, 1280x1024, 1 display)
Virtualization state] ‘GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
‘GRID M60-08 virtual GPU (16 per GPU, 2560x1600, 2 displays)
uuIp: NVIDIA Corporation GP102GL [Tesla P40] GPUs B
Pass-through whole GPU
Boot Options (GRID P40-24Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
(GRID P40-24A virtual GPU (1 per GPU, 1280x1024, 1 display)
m v GRID P40-12Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
£ile (GRID P40-12A virtual GPU (2 per GPU, 1280x1024, 1 display)
GRID P40-8Q virtual GPU (3 per GPU, 4096x2160, 4 displays)
(GRID P40-8A virtual GPU (3 per GPU, 1280x1024, 1 display) -
Infrastructure
Objects
Organization Views
Saved Searches
Notifications

After you have configured a Citrix Hypervisor VM with a vGPU, start the VM, either from
XenCenter or by using xe vm-start in a dom0 shell. You can view the VM’s console in
XenCenter.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.5.3. Setting vGPU Plugin Parameters on Citrix
Hypervisor

Plugin parameters for a vGPU control the behavior of the vVGPU, such as the frame rate limiter
(FRL) configuration in frames per second or whether console virtual network computing

(VNCJ for the vGPU is enabled. The VM to which the vGPU is assigned is started with these
parameters. If parameters are set for multiple vGPUs assigned to the same VM, the VM is
started with the parameters assigned to each vGPU.

For each vGPU for which you want to set plugin parameters, perform this task in a command
shell in the Citrix Hypervisor dom0 domain.

1. Get the UUIDs of all VMs on the hypervisor host and use the output from the command to
identify the VM to which the vGPU is assigned.

[root@xenserver ~] xe vm-list
uuid (RO) : 7£6c855d-5635-2d57-9fbc-b1200172162f

name-label (RW): RHELS8.3
power-state (RO): running

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 28

Installing and Configuring NVIDIA Virtual GPU Manager

2. Get the UUIDs of all vGPUs on the hypervisor host and from the UUID of the VM to which
the vGPU is assigned, determine the UUID of the vGPU.

[root@xenserver ~] xe vgpu-list
uuid (RO) : d15083f8-5¢59-7474-d0cb-fbc3f7284f1b
vm-uuid (RO): 7£6c855d-5635-2d57-9fbc-b1200172162F

device (RO): 0
gpu-group-uuid (RO): 3a2fbc36-827d-a078-0b2f-9e86%ae6£d93

3. Use the xe command to set each vGPU plugin parameter that you want to set.

[root@xenserver ~] xe vgpu-param-set uuid=vgpu-uuid extra args='parameter=value'
vgpu-uuid
The UUID of the vGPU, which you obtained in the previous step.
parameter
The name of the vGPU plugin parameter that you want to set.
value

The value to which you want to set the vGPU plugin parameter.

This example sets the enable uvm vGPU plugin parameter to 1 for the vGPU that has the
UUID d15083£8-5¢c59-7474-d0cb-£fbc3£7284£1b. This parameter setting enables unified
memory for the vGPU.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284f1b
extra args='enable uvm=1'

2.6. Installing the Virtual GPU Manager
Package for Linux KVM

NVIDIA vGPU software for Linux Kernel-based Virtual Machine (KVM] (Linux KVM] is intended
only for use with supported versions of Linux KVM hypervisors. For details about which Linux
KVM hypervisor versions are supported, see Virtual GPU Software for Generic Linux with KVM
Release Notes.

Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVYM or RHV.

Note: If you are using Red Hat Enterprise Linux KVM, follow the instructions in Installing and

Before installing the Virtual GPU Manager package for Linux KVM, ensure that the following
prerequisites are met:

» The following packages are installed on the Linux KVM server:

» The x86_64 build of the GNU Compiler Collection (GCC]
> Linux kernel headers

» The package file is copied to a directory in the file system of the Linux KVM server.

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
package.

1. Change to the directory on the Linux KVM server that contains the package file.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 29

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-generic-linux-kvm.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-generic-linux-kvm.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

cd package-file-directory
package-file-directory
The path to the directory that contains the package file.

2. Make the package file executable.
chmod +x package-file-name
package-file-name
The name of the file that contains the Virtual GPU Manager package for Linux KVM, for
example NVIDIA-Linux-x86 64-390.42-vgpu-kvm.run.

3. Run the package file as the root user.

sudo sh./package-file-name

The package file should launch and display the license agreement.
4. Accept the license agreement to continue with the installation.
5. When installation has completed, select OK to exit the installer.

6. Reboot the Linux KVM server.
systemctl reboot

2.7. Installing and Configuring the NVIDIA
Virtual GPU Manager for Red Hat
Enterprise Linux KVM or RHV

The following topics step you through the process of setting up a single Red Hat Enterprise
Linux Kernel-based Virtual Machine (KVM] or Red Hat Virtualization (RHV] VM to use NVIDIA

vGPU.

Red Hat Enterprise Linux KVYM and RHV use the same Virtual GPU Manager package, but are
configured with NVIDIA vGPU in different ways.

CAUTION: Output from the VM console is not available for VMs that are running vGPU. Make
sure that you have installed an alternate means of accessing the VM (such as a VNC server)
before you configure vGPU.

For RHV, follow this sequence of instructions:

1. Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVYM or RHV
2. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
3. Adding a vGPU to a Red Hat Virtualization (RHV] VM

For Red Hat Enterprise Linux KVM, follow this sequence of instructions:

Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM or RHY
MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs

Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor

Creating an NVIDIA vGPU on a Linux with KVM Hypervisor

Adding One or More vGPUs to a Linux with KVM Hypervisor VM

Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

AL

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 30

Installing and Configuring NVIDIA Virtual GPU Manager

After the process is complete, you can install the graphics driver for your guest OS and license
any NVIDIA vGPU software licensed products that you are using.

Virtual GPU Manager Package for Linux KVM.

. Note: If you are using a generic Linux KVM hypervisor, follow the instructions in Installing the

2.7.1. Installing the NVIDIA Virtual GPU Manager
for Red Hat Enterprise Linux KVM or RHV

The NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM and Red Hat Virtualization
(RHV) is provided as a . rpm file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you update
vGPU Manager to a release that is incompatible with the guest VM drivers, guest VMs will boot
with vGPU disabled until their guest vGPU driver is updated to a compatible version. Consult
Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes for further details.

2.7.1.1. Installing the Virtual GPU Manager Package for
Red Hat Enterprise Linux KVM or RHV

Before installing the RPM package for Red Hat Enterprise Linux KVM or RHV, ensure that the
sshd service on the Red Hat Enterprise Linux KVM or RHV server is configured to permit root
login. If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing
the package. For instructions, see How to disable the Nouveau driver and install the Nvidia
driver in RHEL 7 (Red Hat subscription required).

Some versions of Red Hat Enterprise Linux KVM have z-stream updates that break Kernel
Application Binary Interface (kABI) compatibility with the previous kernel or the GA kernel.
For these versions of Red Hat Enterprise Linux KVM, the following Virtual GPU Manager RPM
packages are supplied:

» A package for the GA Linux KVM kernel

» A package for the updated z-stream kernel

To differentiate these packages, the name of each RPM package includes the kernel version.

Ensure that you install the RPM package that is compatible with your Linux KVM kernel
version.

1. Securely copy the RPM file from the system where you downloaded the file to the Red Hat
Enterprise Linux KVM or RHV server.

» From a Windows system, use a secure copy client such as WinSCP.
» From a Linux system, use the scp command.

2. Use secure shell (SSH) to log in as root to the Red Hat Enterprise Linux KVM or RHV
server.

ssh rootQRkvm-server

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 31

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
https://access.redhat.com/solutions/1155663
https://access.redhat.com/solutions/1155663

Installing and Configuring NVIDIA Virtual GPU Manager

kvm-server
The host name or IP address of the Red Hat Enterprise Linux KVM or RHV server.
3. Change to the directory on the Red Hat Enterprise Linux KVM or RHV server to which you
copied the RPM file.
cd rpm-file-directory
rpm-file-directory
The path to the directory to which you copied the RPM file.
4. Use the rpm command to install the package.

rpm -iv NVIDIA-vGPU-rhel-8.4-470.141.05.x86_64.rpm
Preparing packages for installation...
NVIDIA-vGPU-rhel-8.4-470.141.05

#

5. Reboot the Red Hat Enterprise Linux KVM or RHV server.

systemctl reboot

2.7.1.2. Verifying the Installation of the NVIDIA vGPU
Software for Red Hat Enterprise Linux KVM or RHV

After the Red Hat Enterprise Linux KVM or RHV server has rebooted, verify the installation of
the NVIDIA vGPU software package for Red Hat Enterprise Linux KVM or RHV.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by checking
for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio

nvidia vgpu vfio 27099 0

nvidia 12316924 1 nvidia vgpu vfio

vfio mdev 12841 O

mdev 20414 2 vfio mdev,nvidia vgpu vfio

vfio iommu typel 22342 0

vfio 32331 3 vfio mdev,nvidia vgpu vfio,vfio iommu typel
#

2. Verify that the 1ibvirtd service is active and running.
service libvirtd status

3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

nvidia-smi
Fri Aug 12 18:46:50 2022

e +

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |

|——— o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| = = |
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
R it ittt e e e o B e e +
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
o o o +
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18W / 250W | 53MiB / 24575MiB | 0% Default |

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 32

Installing and Configuring NVIDIA Virtual GPU Manager

Processes: GPU Memory |
GPU PID Type Process name Usage |

No running processes found |

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs in
your system, see Troubleshooting for troubleshooting steps.

2.7.2. Adding a vGPU to a Red Hat Virtualization

(RHV] VM

Ensure that the VM to which you want to add the vGPU is shut down.

1.

Determine the mediated device type [mdev type] identifiers of the vGPU types available on
the RHV host.

vdsm-client Host hostdevListByCaps

"mdev": {

"nvidia-155": ({
"name": "GRID M10-2B",
"available instances": "4"
by
"nvidia-36": {
"name": "GRID M10-0Q",
"available instances": "16"

by

The preceding example shows the mdev_type identifiers of the following vGPU types:
» Forthe GrRID M10-2B vGPU type, the mdev type identifier is nvidia-155.

» Forthe GRID M10-00Q VGPU type, the mdev_type identifier is nvidia-36.

2. Note the mdev type identifier of the vGPU type that you want to add.
3. Login to the RHV Administration Portal.
4. From the Main Navigation Menu, choose Compute > Virtual Machines > virtual-machine-
name .
virtual-machine-name
The name of the virtual machine to which you want to add the vGPU.
5. Click Edit.

6. In the Edit Virtual Machine window that opens, click Show Advanced Options and in the list

of options, select Custom Properties.
From the drop-down list, select mdev_type.

. In the text field, type the mdev_type identifier of the vGPU type that you want to add and

click OK.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 33

Installing and Configuring NVIDIA Virtual GPU Manager

Edit Virtual Machine @ X
General
Cluster Default i
system Data Center: Default
i Template Blank | (0) "
Initial Run
Operating System Windows 10 x64 S
Console
Instance Type €2 Customn -
Host Optimized for Desktop v
High Availability
mdev_type v nvidia-38 * (-

Resource Allocation

Boot Options

Random Generator

Custom Properties >

Icon

Foreman/Satellite

Affinity Labels

Hide Advanced Options m Cancel

After adding a vGPU to an RHV VM, start the VM.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.8. Since 13.1: Installing and Configuring
the NVIDIA Virtual GPU Manager for
Ubuntu

Follow this sequence of instructions to set up a single Ubuntu VM to use NVIDIA vGPU.
1. Installing the NVIDIA Virtual GPU Manager for Ubuntu

2. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
3. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 34

Installing and Configuring NVIDIA Virtual GPU Manager

4. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
5. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
6. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

CAUTION: Output from the VM console is not available for VMs that are running vGPU. Make
sure that you have installed an alternate means of accessing the VM (such as a VNC server)
before you configure vGPU.

After the process is complete, you can install the graphics driver for your guest OS and license
any NVIDIA vGPU software licensed products that you are using.

2.8.1. Installing the NVIDIA Virtual GPU Manager
for Ubuntu

The NVIDIA Virtual GPU Manager for Ubuntu is provided as a Debian package (. deb] file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you update
vGPU Manager to a release that is incompatible with the guest VM drivers, guest VMs will boot
with vGPU disabled until their guest vGPU driver is updated to a compatible version. Consult
Virtual GPU Software for Ubuntu Release Notes for further details.

2.8.1.1. Installing the Virtual GPU Manager Package for
Ubuntu

Before installing the Debian package for Ubuntu, ensure that the sshd service on the Ubuntu
server is configured to permit root login. If the Nouveau driver for NVIDIA graphics cards is
present, disable it before installing the package.

1. Securely copy the Debian package file from the system where you downloaded the file to
the Ubuntu server.

» From a Windows system, use a secure copy client such as WinSCP.
» From a Linux system, use the scp command.

2. Use secure shell [SSH) to log in as root to the Ubuntu server.
ssh root@ubuntu-server
ubuntu-server
The host name or IP address of the Ubuntu server.
3. Change to the directory on the Ubuntu server to which you copied the Debian package file.
cd deb-file-directory
deb-file-directory
The path to the directory to which you copied the Debian package file.
4. Use the apt command to install the package.
apt install ./nvidia-vgpu-ubuntu-470_470.141.05_amd64.deb
5. Reboot the Ubuntu server.
systemctl reboot

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 35

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

2.8.1.2. Verifying the Installation of the NVIDIA vGPU

Software for Ubuntu

After the Ubuntu server has rebooted, verify the installation of the NVIDIA vGPU software
package for Red Hat Enterprise Linux KVM or RHV.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by checking
for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio

nvidia vgpu vfio 27099 0

nvidia 12316924 1 nvidia vgpu vfio

vfio mdev 12841 O

mdev 20414 2 vfio mdev,nvidia vgpu vfio

vfio iommu typel 22342 0

vfio 32331 3 vfio mdev,nvidia vgpu vfio,vfio iommu typel
#

2. Verify that the 1ibvirtd service is active and running.
service libvirtd status

3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

nvidia-smi
Fri Aug 12 18:46:50 2022

o +

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |
|- - -—— +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| + + |
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
o o o +
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
o o o +
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18w / 250W | 53MiB / 24575MiB | 0% Default |
- - -—— +
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| No running processes found |
e +
#

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs in
your system, see Troubleshooting for troubleshooting steps.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 36

Installing and Configuring NVIDIA Virtual GPU Manager

2.9. Installing and Configuring the NVIDIA
Virtual GPU Manager for VMware
vSphere

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware vSphere
VM to use NVIDIA vGPU or VMware vSGA. The vGPU Manager vSphere Installation Bundles
(VIBs) for VMware vSphere 6.5 and later provide vSGA and vGPU functionality in a single VIB.
For VMware vSphere 6.0, vSGA and vGPU functionality are provided in separate vGPU Manager
VIBs.

[g] Note:

Some servers, for example, the Dell R740, do not configure SR-10V capability if the SR-10V
SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware vSphere
on such a server, you must ensure that the SR-I0V SBIOS setting is enabled on the server.

However, with any server hardware, do not enable SR-10V in VMware vCenter Server for the
Tesla T4 GPU. If SR-I0V is enabled in VMware vCenter Server for T4, VMware vCenter Server
lists the status of the GPU as needing a reboot. You can ignore this status message.

NVIDIA vGPU Instructions

S Note: As of VMware vSphere 7.0 Update 1, the Xorg service is no longer required for graphics
devices in NVIDIA vGPU mode. For more information, see Installing and Updating the NVIDIA

Virtual GPU Manager for vSphere.

For NVIDIA vGPU, follow this sequence of instructions:

1. Installing and Updating the NVIDIA Virtual GPU Manager for vSphere

. Configuring VMware vMotion with vGPU for VMware vSphere

2

3. Changing the Default Graphics Type in VMware vSphere 6.5 and Later
4. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
5
6

. Configuring a vSphere VM with NVIDIA vGPU
. Optional: Setting vGPU Plugin Parameters on YMware vSphere

After configuring a vSphere VM to use NVIDIA vGPU, you can install the NVIDIA vGPU software
graphics driver for your guest OS and license any NVIDIA vGPU software licensed products
that you are using.

VMware vSGA Instructions

For VMware vSGA, follow this sequence of instructions:

1. Installing and Updating the NVIDIA Virtual GPU Manager for vSphere

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 37

Installing and Configuring NVIDIA Virtual GPU Manager

2. Configuring a vSphere VM with VMware vSGA

Installation of the NVIDIA vGPU software graphics driver for the guest OS is not required for
VSGA.
Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed Resource
Scheduler (DRS) cluster. However, you must ensure that the automation level of the cluster
supports VMs configured with NVIDIA vGPU:

» Forany supported VMware vSphere release, set the automation level to Manual.

> For VMware vSphere 6.7 Update 1 or later, set the automation level to Partially Automated
or Manual.

For more information about these settings, see Edit Cluster Settings in the VMware
documentation.

2.9.1. Installing and Updating the NVIDIA Virtual
GPU Manager for vSphere

The NVIDIA Virtual GPU Manager runs on the ESXi host. How the NVIDIA Virtual GPU Manager
package is distributed depends on the release of VMware vSphere.

» Forall supported VMware vSphere releases, the NVIDIA Virtual GPU Manager package is
distributed as a software component in a ZIP archive, which you can install in one of the
following ways:

» By copying the software component to the ESXi host and then installing it as explained
in Installing the NVIDIA Virtual GPU Manager Package for vSphere

» By importing the software component manually as explained in Import Patches
Manually in the VMware vSphere documentation

» For supported releases before VMware vSphere 7.0, the NVIDIA Virtual GPU Manager

package is also distributed as a vSphere Installation Bundle (VIB] file, which you must copy

to the ESXi host and then install as explained in Installing the NVIDIA Virtual GPU Manager

Package for vSphere.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you update
vGPU Manager to a release that is incompatible with the guest VM drivers, guest VMs will boot
with vGPU disabled until their guest vGPU driver is updated to a compatible version. Consult
Virtual GPU Software for VMware vSphere Release Notes for further details.

2.9.1.1. Installing the NVIDIA Virtual GPU Manager
Package for vSphere

To install the vGPU Manager package you need to access the ESXi host via the ESXi Shell or
SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi host.
Before you begin, ensure that the following prerequisites are met:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 38

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-755AB944-F3D0-43DD-82CD-8CDDDF8674E8.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.update_manager.doc/GUID-1F5292F1-904D-4607-871A-AE426EF9BD3F.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.update_manager.doc/GUID-1F5292F1-904D-4607-871A-AE426EF9BD3F.html
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

> The ZIP archive that contains NVIDIA vGPU software has been downloaded from the
NVIDIA Licensing Portal.

» The NVIDIA Virtual GPU Manager package has been extracted from the downloaded ZIP
archive.

1. Copy the NVIDIA Virtual GPU Manager package file to the ESXi host.
2. Put the ESXi host into maintenance mode.

$ esxcli system maintenanceMode set --enable true
3. Use the esxcli command to install the vGPU Manager package.

For more information about the esxcl1i command, see esxcli software Commands in the
VMware vSphere documentation.

» For a software component, run the following command:

[root@esxi:~] esxcli software vib install -d /vmfs/volumes/datastore/software-
component. zip

datastore

The name of the VMFS datastore to which you copied the software component.
software-component

The name of the file that contains the NVIDIA Virtual GPU Manager package

in the form of a software component. Ensure that you specify the file that

was extracted from the downloaded ZIP archive. For example, for VMware

vSphere 7.0, software-component is NVD .NVIDIA bootbank NVIDIA-

VMware 470.141.05-10EM.700.0.0.8169922-0ffline bundle-build-number.

» ForaVIBfile, run the following command:

[root@esxi:~] esxcli software vib install -v directory/NVIDIA-vGPU-
VMware ESXi 7.0_Host Driver 470.141.05-10EM.700.0.0.8169922.vib
Installation Result
Message: Operation finished successfully.
Reboot Required: false
VIBs Installed: NVIDIA-vGPU-
VMware ESXi 7.0 Host Driver 470.141.05-10EM.700.0.0.8169922
VIBs Removed:
VIBs Skipped:

directory
The absolute path to the directory to which you copied the VIB file. You must specify
the absolute path even if the VIB file is in the current working directory.

4. Exit maintenance mode.

S esxcli system maintenanceMode set --enable false

5. Reboot the ESXi host.

$ reboot

2.9.1.2. Updating the NVIDIA Virtual GPU Manager Package
for vSphere

Update the vGPU Manager VIB package if you want to install a new version of NVIDIA Virtual
GPU Manager on a system where an existing version is already installed.

CAUTION: Do not perform this task on a system where an existing version isn't already
installed. If you perform this task on a system where an existing version isn't already installed,

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 39

https://code.vmware.com/docs/11743/esxi-7-0-esxcli-command-reference/namespace/esxcli_software.html

Installing and Configuring NVIDIA Virtual GPU Manager

the Xorg service (when required) fails to start after the NVIDIA vGPU software driver is
installed. Instead, install the vGPU Manager VIB package as explained in Installing the NVIDIA
Virtual GPU Manager Package for vSphere.

To update the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or SSH.
Refer to VMware's documentation on how to enable ESXi Shell or SSH for an ESXi host.

S Note: Before proceeding with the vGPU Manager update, make sure that all VMs are powered
off and the ESXi host is placed in maintenance mode. Refer to VMware's documentation on how
to place an ESXi host in maintenance mode

1. Use the esxcli command to update the vGPU Manager package:
[root@esxi:~] esxcli software vib update -v directory/NVIDIA-vGPU-
VMware ESXi 7.0_Host Driver 470.141.05-10EM.700.0.0.8169922.vib

Installation Result
Message: Operation finished successfully.
Reboot Required: false
VIBs Installed: NVIDIA-vGPU-

VMware ESXi 7.0 Host Driver 470.141.05-10EM.700.0.0.8169922
VIBs Removed: NVIDIA-vGPU-

VMware ESXi 7.0 Host Driver 470.129.04-10EM.700.0.0.8169922
VIBs Skipped:

directory is the path to the directory that contains the VIB file.
2. Reboot the ESXi host and remove it from maintenance mode.

2.9.1.3. Verifying the Installation of the NVIDIA vGPU

Software Package for vSphere

After the ESXi host has rebooted, verify the installation of the NVIDIA vGPU software package
for vSphere.

1. Verify that the NVIDIA vGPU software package installed and loaded correctly by checking
for the NVIDIA kernel driver in the list of kernel loaded modules.

[root@esxi:~] vmkload mod -1 | grep nvidia
nvidia 5 8420

2. If the NVIDIA driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.

The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

[root@esxi:~] nvidia-smi

Fri Aug 12 17:56:22 2022

o +

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |

|mmmm o B ettt +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 40

Installing and Configuring NVIDIA Virtual GPU Manager

00000000:05:00.0 Off

| |
| 0 Tesla M60 On | | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
e t———————— = o +
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
e o e +
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
B ettt o o +
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
- - -—— = +
- +
Processes: GPU Memory

|
GPU PID Type Process name Usage |
|
|

|
|
|
| No running processes found

o +

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your system, see

Troubleshooting for troubleshooting steps.

2.9.2. Configuring VMware vMotion with vGPU for
VMware vSphere

NVIDIA vGPU software supports vGPU migration, which includes VMware vMotion and
suspend-resume, for VMs that are configured with vGPU. To enable VMware vMotion with
vGPU, an advanced vCenter Server setting must be enabled. However, suspend-resume for
VMs that are configured with vGPU is enabled by default.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support vGPU migration, see Virtual GPU Software for VMware vSphere Release Notes.

Before configuring VMware vMotion with vGPU for an ESXi host, ensure that the current
NVIDIA Virtual GPU Manager for VMware vSphere package is installed on the host.

1. Log in to vCenter Server by using the vSphere Web Client.
2. In the Hosts and Clusters view, select the vCenter Server instance.

Note: Ensure that you select the vCenter Server instance, not the vCenter Server VM.

3. Click the Configure tab.
4. In the Settings section, select Advanced Settings and click Edit.

5. In the Edit Advanced vCenter Server Settings window that opens, type vGPU in the search
field.

6. When the vgpu.hotmigrate.enabled setting appears, set the Enabled option and click OK.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 41

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

[/ 10.31.115.130 - Edit Advanced vCenter Server Settings (?)

& Adding or modifying configuration parameters is unsupporied and can cause instability. Configuration parameters cannot
be removed once they are added. Continue only if you know what you are doing.

(@ vePUyl -~

Mams alue Summary

vgpu.hotmigrate.enabled] Enabled Enable vGPU hot migration

2.9.3. Changing the Default Graphics Type in
VMware vSphere 6.5 and Later

The vGPU Manager VIBs for VMware vSphere 6.5 and later provide vSGA and vGPU
functionality in a single VIB. After this VIB is installed, the default graphics type is Shared,
which provides vSGA functionality. To enable vGPU support for VMs in VMware vSphere 6.5,
you must change the default graphics type to Shared Direct. If you do not change the default
graphics type, VMs to which a vGPU is assigned fail to start and the following error message is
displayed:

The amount of graphics resource available in the parent resource pool is
insufficient for the operation.

@ Note:

If you are using a supported version of VMware vSphere earlier than 6.5, or are configuring a
VM to use vSGA, omit this task.

Change the default graphics type before configuring vGPU. Output from the VM console in the
VMware vSphere Web Client is not available for VMs that are running vGPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 42

Installing and Configuring NVIDIA Virtual GPU Manager

Before changing the default graphics type, ensure that the ESXi host is running and that all
VMs on the host are powered off.

1. Log in to vCenter Server by using the vSphere Web Client.

2. In the navigation tree, select your ESXi host and click the Configure tab.
3. From the menu, choose Graphics and then click the Host Graphics tab.
4. Onthe Host Graphics tab, click Edit.

Figure 10.

Shared default graphics type

vmware® vSphere Web Client #= U | Administrator@PSG-HOME.LOCAL ~ | Help ~
Navigator X [1921681130 | B 7 [[[| {8Actions - =
4 Back

Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks

“ Host Graphics | Graphics Devices

Advanced -

Lz 8
~[51192.168.11.6
v [lghome

» B 192.168.11.20 w Virtual Machines

F 192.168.11.30

VM Startup/Shutdown
Agent VM Settings

Swap file location

Host Graphics Settings

Default graphics type:

Shared passthrough GPU
assignment policy:

Shared

Spread VMs across GPUs (best performance)

Default VM Compatibility

+ System
Licensing
Time Configuration
Authentication Services
Certificate
Power Management
Advanced System Settings
System Resource Reservation
Security Profile
System Swap
Host Profile

+ Hardware
Processors
Memory

T

Power Management
PCI Devices

+w Virtual Flash =
< e »

< i »

5. In the Edit Host Graphics Settings dialog box that opens, select Shared Direct and click
OK.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 43

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 11. Host graphics settings for vGPU

[Zl 192.168.11.30 - Edit Host Graphics Settings 2

,ﬂ Settings will take effect after restarting the host or "xorg" service.

() Shared
VMware shared virtual graphics

(¢) Shared Direct
Vendor shared passthrough graphics

Shared passthrough GPU assignment policy:
(») Spread VMs across GPUs (best performance)

(L) Group VMs on GPU until full (GPU consolidation)

OK] [Cancel

For more information, see Modifying GPU Allocation Policy on VMware vSphere.

Note: In this dialog box, you can also change the allocation scheme for vGPU-enabled VMs.

After you click OK, the default graphics type changes to Shared Direct.

6. Click the Graphics Devices tab to verify the configured type of each physical GPU on which
you want to configure vGPU.
The configured type of each physical GPU must be Shared Direct. For any physical GPU for
which the configured type is Shared, change the configured type as follows:

a). On the Graphics Devices tab, select the physical GPU and click the Edit icon.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 44

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 12. Shared graphics type

Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks — Update Manager

Host Graphics | Graphics Devices

Graphics Devices

Time Configuration
Authentication Services

ot ’
Power Management Name Vendor Acive Type Configured Type Mamary
Advanced System Settings NVIDIATesla M60 NVIDIA Corporation Shared Shared 7.98 GB
A ——— NVIDIATesla M60 NVIDIA Corporation Shared Shared 79968
Security Profile
System Swap
Host Profile
+ Hardware L] 2items [3Export~ [5Copy~

Bocessos VMs associated with the graphics device "NVIDIATe sla MG0"

Memory
& B & G | gactons - % (aFiter -
M lown Comtm —

b). In the Edit Graphics Device Settings dialog box that opens, select Shared Direct and
click OK.

Figure 13. Graphics device settings for a physical GPU

A Settings will take effect after restarting the host or “xorg" service.

() Shared
VNwiare shared virtual graphics

(=) Shared Direct
\Vendor shared passthrough graphics

7. Restart the ESXi host or stop and restart the Xorg service if necessary and nv-hostengine
on the ESXi host.
To stop and restart the Xorg service and nv-hostengine, perform these steps:
al. VMware vSphere releases before 7.0 Update 1 only: Stop the Xorg service.
As of VMware vSphere 7.0 Update 1, the Xorg service is no longer required for graphics

devices in NVIDIA vGPU mode.
b). Stop nv-hostengine.

[root@esxi:~] nv-hostengine -t
c). Wait for 1 second to allow nv-hostengine to stop.
d). Start nv-hostengine.

[root@esxi:~] nv-hostengine -d

e]. VMware vSphere releases before 7.0 Update 1 only: Start the Xorg service.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 45

Installing and Configuring NVIDIA Virtual GPU Manager

As of VMware vSphere 7.0 Update 1, the Xorg service is no longer required for graphics
devices in NVIDIA vGPU mode.

[root@esxi:~] /etc/init.d/xorg start

8. In the Graphics Devices tab of the VMware vCenter Web Ul, confirm that the active type
and the configured type of each physical GPU are Shared Direct.

Figure 14. Shared direct graphics type

Getting Started Summary Mumturl[jonngure‘Permlssmns VMs Resource Pools Datastores Networks Update Manager

& Host Graphics | Graphics Devices

Time Configuration
Graphics Devices
Authentication Services

Certificate 7 Q Fie ~
Power Management Name Vendor Active Type Configured Type: Memary
T — NVIDIATesta MG0 NVIDIA Corporation Shared Direct Shared Direct 79868
. NVIDIATesta MG0 NVIDIA Corporation Shared Direct Shared Direct 70068
System Resource Reservation
Security Profile
System Swap
Host Profile
 Hardware [Find - 2items [3 Ewort~ [3Copy~
Processors VMs associated with the graphics device "NVIDIATesla MG0™
Memory
¥ m0s pmn -

After changing the default graphics type, configure vGPU as explained in Configuring a
vSphere VM with NVIDIA vGPU.

See also the following topics in the VMware vSphere documentation:

» LogintovCenter Server by Using the vSphere Web Client

» Configuring Host Graphics

2.9.4. Configuring a vSphere VM with NVIDIA vGPU

To support applications and workloads that are compute or graphics intensive, you can add
multiple vGPUs to a single VM.

For details about which VMware vSphere versions and NVIDIA vGPUs support the assignment
of multiple vGPUs to a VM, see Virtual GPU Software for VMware vSphere Release Notes.

If you upgraded to VMware vSphere 6.7 Update 3 from an earlier version and are using VMs
that were created with that version, change the VM compatibility to vSphere 6.7 Update 2 and
later. For details, see Virtual Machine Compatibility in the VMware documentation.

If you are adding multiple vGPUs to a single VM, perform this task for each vGPU that you want
to add to the VM.

CAUTION: Output from the VM console in the VMware vSphere Web Client is not available for
VMs that are running vGPU. Make sure that you have installed an alternate means of accessing
the VM (such as VMware Horizon or a VNC server] before you configure vGPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 46

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-64D4B1C9-CD5D-4C68-8B50-585F6A87EBA0.html

Installing and Configuring NVIDIA Virtual GPU Manager

VM console in vSphere Web Client will become active again once the vGPU parameters are
removed from the VM's configuration.

Note: If you are configuring a VM to use VMware vSGA, omit this task.

1. Open the vCenter Web Ul.
2. Inthe vCenter Web Ul, right-click the VM and choose Edit Settings.
3. Click the Virtual Hardware tab.
4. In the New device list, select Shared PCI Device and click Add.
The PCI device field should be auto-populated with NVIDIA GRID vGPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 47

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 15. VM settings for vGPU

1 Win7x86 - Edit Settings (2]

| Virtual Hardware = VM Options | SDRS Rules | vApp Options |

» [CPU K I~ ®
» & Memory ‘ 1024 ‘ - ‘mB v
+ (2 Hard disk 1 24 = (cB -

» SCSl controller 0 LSI Logic SAS

» [Network adapter 1 |'-VM Network v-\l [+] Connect...
» (@) CD/DVD drive 1 | Datastore 1SO File v‘l [+/] Connect...
3 Floppy drive 1 | Client Device v.l
+ [Video card | Specify custom settings v.l
~ PCl device 0 | NVIDIA GRID vGPU |+]
GPU Profile grid_m10-4q j
grid_m10-8q * are unavailable when
grid_m10-8a ient. You cannot
) or restore snapshots of
grid_m10-4qg
SATA controller 0 grid_m10-4a
) grid_ m10-2qg
b > VMCI device
grid_m10-2a -

¢ Other Devices

The maximum number of devices of this type has been reached.

New device:]ﬁ Shared PCI Device - Add

Compatibility: ESXi 6.0 and later (VM version 11} 0K Cancel

5. From the GPU Profile drop-down menu, choose the type of vGPU you want to configure
and click OK.

Note: VMware vSphere does not support vCS. Therefore, C-series vGPU types are not
available for selection from the GPU Profile drop-down menu.

6. Ensure that VMs running vGPU have all their memory reserved:
a). Select Edit virtual machine settings from the vCenter Web Ul.
b). Expand the Memory section and click Reserve all guest memory (ALl locked).

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 48

Installing and Configuring NVIDIA Virtual GPU Manager

After you have configured a vSphere VM with a vGPU, start the VM. VM console in vSphere Web
Client is not supported in this vVGPU release. Therefore, use VMware Horizon or VNC to access
the VM’'s desktop.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.9.5. Setting vGPU Plugin Parameters on VMware
vSphere

Plugin parameters for a vGPU control the behavior of the vVGPU, such as the frame rate limiter
(FRL) configuration in frames per second or whether console virtual network computing

(VNCJ for the vGPU is enabled. The VM to which the vGPU is assigned is started with these
parameters. If parameters are set for multiple vGPUs assigned to the same VM, the VM is
started with the parameters assigned to each vGPU.

Ensure that the VM to which the vGPU is assigned is powered off.

For each vGPU for which you want to set plugin parameters, perform this task in the vSphere
Client. vGPU plugin parameters are PCl pass through configuration parameters in advanced
VM attributes.

In the vSphere Client, browse to the VM to which the vGPU is assigned.
Context-click the VM and choose Edit Settings.

In the Edit Settings window, click the VM Options tab.

From the Advanced drop-down list, select Edit Configuration.

In the Configuration Parameters dialog box, click Add Row.

ARSI

In the Name field, type the parameter name pciPassthruvgpu-id.cfg.parameter, in the

Value field type the parameter value, and click OK.

vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
setting a plugin parameter for both vGPUs, set the following parameters:

» pciPassthru0.cfqg.parameter

> pciPassthrul.cfqg.parameter

parameter
The name of the vGPU plugin parameter that you want to set. For example, the name of
the vGPU plugin parameter for enabling unified memory is enable_uvm.

To enable unified memory for two vGPUs that are assigned to a VM, set
pciPassthru0.cfg.enable uvmand pciPassthrul.cfg.enable uvmto 1.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 49

Installing and Configuring NVIDIA Virtual GPU Manager

2.9.6. Configuring a vSphere VM with VMware vSGA

Virtual Shared Graphics Acceleration (vVSGA] is a feature of VMware vSphere that enables
multiple virtual machines to share the physical GPUs on ESXi hosts.

Note: If you are configuring a VM to use NVIDIA vGPU, omit this task.

Before configuring a vSphere VM with vSGA, ensure that these prerequisites are met:

» VMware tools are installed on the VM.
» The VM is powered off.
The NVIDIA Virtual GPU Manager package for vSphere is installed.

Open the vCenter Web UlI.

In the vCenter Web U, right-click the VM and choose Edit Settings.

Click the Virtual Hardware tab.

In the device list, expand the Video card node and set the following options:
a). Select the Enable 3D support option.

b). Set the 3D Renderer to Hardware.

For more information, see Configure 3D Graphics and Video Cards in the VMware Horizon
documentation.

0. Start the VM.
6. After the VM has booted, verify that the VM has been configured correctly with vSGA.

a). Under the Display Adapter section of Device Manager, confirm that vMware SVGA 3D
is listed.

AL~ -

b). Verify that the virtual machine is using the GPU card.
gpuvm
The output from the command is similar to the following example for a VM named

samplevml:

Xserver unix:0, GPU maximum memory 4173824KB
pid 21859, VM samplevml, reserved 131072KB of GPU memory.
GPU memory left 4042752KB.

The memory reserved for the VM and the GPU maximum memory depend on the GPU
installed in the host and the 3D memory allocated to the virtual machine.

Installation of the NVIDIA vGPU software graphics driver for the guest OS is not required for
VSGA.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 50

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-E03ED27D-E469-4115-80E1-435125D6168B.html

Installing and Configuring NVIDIA Virtual GPU Manager

2.10. Configuring the vGPU Manager for a
Linux with KVM Hypervisor

NVIDIA vGPU software supports the following Linux with KVM hypervisors: Red Hat Enterprise
Linux with KVM and Ubuntu.

2.10.1. Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor

Sometimes when configuring a physical GPU for use with NVIDIA vGPU software, you must
find out which directory in the sysfs file system represents the GPU. This directory is
identified by the domain, bus, slot, and function of the GPU.

For more information about the directory in the sysfs file system that represents a physical
GPU, see NVIDIA vGPU Information in the sysfs File System.

1. Obtain the PCI device bus/device/function (BDF) of the physical GPU.

lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCl device BDFs 06:00.0 and 07:00.0.

lspci | grep NVIDIA

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
al)

07:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
al)

2. Obtain the full identifier of the GPU from its PCI device BDF.
virsh nodedev-list --cap pci| grep transformed-bdf
transformed-bdf
The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 06 _00 0.

This example obtains the full identifier of the GPU with the PCI device BDF 06:00. 0.
virsh nodedev-list --cap pci| grep 06_00_0
pci 0000 06 00 0
3. Obtain the domain, bus, slot, and function of the GPU from the full identifier of the GPU.
virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'
full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci 0000 06 00 0.

This example obtains the domain, bus, slot, and function of the GPU with the PCl device
BDF 06:00.0.

virsh nodedev-dumpxml pci_0000_06_00 0| egrep 'domain|bus|slot|function'
<domain>0x0000</domain>
<bus>0x06</bus>
<slot>0x00</slot>
<function>0x0</function>
<address domain='0x0000"' bus='0x06"' slot='0x00' function='0x0"'/>

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 51

Installing and Configuring NVIDIA Virtual GPU Manager

2.10.2. Creating an NVIDIA vGPU on a Linux with
KVM Hypervisor

For each vGPU that you want to create, perform this task in a Linux command shell on the a
Linux with KVM hypervisor host.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU on which
you are creating the vGPU. For instructions, see Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor.

How to create an NVIDIA vGPU on a Linux with KVM hypervisor depends on whether the
NVIDIA vGPU supports single root I/0 virtualization (SR-10V). For details, refer to:

> Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor
» Creating an NVIDIA vGPU that Supports SR-I0V on a Linux with KVM Hypervisor

2.10.2.1. Creating a Legacy NVIDIA vGPU on a Linux with
KVM Hypervisor

A legacy NVIDIA vGPU does not support SR-10V.

1. Change to the mdev_supported types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot. function/mdev_supported types/
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev supported types directory for the GPU with the
domain 0000 and PCl device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported types/
2. Find out which subdirectory of mdev supported types contains registration information
for the vGPU type that you want to create.
grep -1 "vgpu-type" nvidia-*/name
vgpu-type
The vGPU type, for example, M10-20.

This example shows that the registration information for the M10-2Q vGPU type is

contained in the nvidia-41 subdirectory of mdev supported types.

grep -1 "M10-2Q" nvidia-*/name
nvidia-41/name

3. Confirm that you can create an instance of the vGPU type on the physical GPU.
cat subdirectory/available_instances
subdirectory
The subdirectory that you found in the previous step, for example, nvidia-41.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 52

Installing and Configuring NVIDIA Virtual GPU Manager

The number of available instances must be at least 1. If the number is 0, either an instance
of another vGPU type already exists on the physical GPU, or the maximum number of
allowed instances has already been created.

This example shows that four more instances of the M10-2Q vGPU type can be created on
the physical GPU.

cat nvidia-41/available_instances
4

4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.

uuidgen
2a618089-8b16-4d01-a136-25a0£3¢c73123

5. Write the UUID that you obtained in the previous step to the create file in the registration

information directory for the vGPU type that you want to create.

echo "uuid"> subdirectory/create

uuid
The UUID that you generated in the previous step, which will become the UUID of the
vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create, for
example, nvidia-41.

This example creates an instance of the M10-2Q vGPU type with the UUID
2a618089-8bl16-4d01-al136-25a0£3c73123.
echo "aa618089-8b16-4d01-al36-25a0£3¢c73123" > nvidia-41/create

An mdev device file for the vGPU is added to the parent physical device directory of the
vGPU. The vGPU is identified by its UUID.

The /sys/bus/mdev/devices/ directory contains a symbolic link to the mdev device file.
6. Make the mdev device file that you created to represent the vGPU persistent.

mdevctl define --auto --uuid uuid
uuid
The UUID that you specified in the previous step for the vGPU that you are creating.

S Note: Not all Linux with KVM hypervisor releases include the mdevctl command. If your
release does not include the mdevctl command, you can use standard features of the
operating system to automate the re-creation of this device file when the host is booted.
For example, you can write a custom script that is executed when the host is rebooted.

7. Confirm that the vGPU was created.

a). Confirm that the /sys/bus/mdev/devices/ directory contains the mdev device file for
the vGPU.
1s -1 /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Nov 24 13:33 aa618089-8b16-4d01-al36-25a0£3c73123 -
> ../../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0/
2a618089-8b16-4d01-a136-25a0f3c73123

b). If your release includes the mdevctl command, list the active mediated devices on the
hypervisor host.

mdevctl list
aa618089-8b16-4d01-al36-25a0f3¢c73123 0000:06:00.0 nvidia-41

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 53

Installing and Configuring NVIDIA Virtual GPU Manager

2.10.2.2. Creating an NVIDIA vGPU that Supports SR-I0V on

a Linux with KVM Hypervisor

An NVIDIA vGPU that supports SR-10V resides on a physical GPU that supports SR-10V, such
as a GPU based on the NVIDIA Ampere architecture.

1. Enable the virtual functions for the physical GPU in the sysfs file system.

@ Note:

» Before performing this step, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

» The virtual functions for the physical GPU in the sys£s file system are disabled after
the hypervisor host is rebooted or if the driver is reloaded or upgraded.

Use only the custom script sriov-manage provided by NVIDIA vGPU software for this
purpose. Do not try to enable the virtual function for the GPU by any other means.
/usr/lib/nvidia/sriov-manage -e domain:bus:slot.function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

Note: Only one mdev device file can be created on a virtual function.

This example enables the virtual functions for the GPU with the domain 00, bus 41, slot
0000, and function 0.

/usr/lib/nvidia/sriov-manage -e 00:41:0000.0

2. Obtain the domain, bus, slot, and function of the available virtual functions on the GPU.
1s -1 /sys/bus/pci/devices/domain\:bus\:slot.function/ | grep virtfn
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example shows the output of this command for a physical GPU with slot 00, bus 41,
domain 0000, and function 0.

1ls -1 /sys/bus/pci/devices/0000:41:00.0/ | grep virtfn
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn0 -> ../0000:41:00.4

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl -> ../0000:41:00.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnlO -> ../0000:41:01.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnll -> ../0000:41:01.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl2 -> ../0000:41:02.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl3 -> ../0000:41:02.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnld -> ../0000:41:02.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl5 -> ../0000:41:02.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnlée -> ../0000:41:02.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl7 -> ../0000:41:02.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl8 -> ../0000:41:02.6

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 54

Installing and Configuring NVIDIA Virtual GPU Manager

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl9 -> ../0000:41:02.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2 -> ../0000:41:00.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn20 -> ../0000:41:03.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2l1 -> ../0000:41:03.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn22 -> ../0000:41:03.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn23 -> ../0000:41:03.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn24 -> ../0000:41:03.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn25 -> ../0000:41:03.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn26 -> ../0000:41:03.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn27 -> ../0000:41:03.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn28 -> ../0000:41:04.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn29 -> ../0000:41:04.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn3 -> ../0000:41:00.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn30 -> ../0000:41:04.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn3l -> ../0000:41:04.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnd -> ../0000:41:01.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn5 -> ../0000:41:01.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn6 -> ../0000:41:01.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn7 -> ../0000:41:01.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn8 -> ../0000:41:01.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn9 -> ../0000:41:01.5

3. Choose the available virtual function on which you want to create the vGPU and note its
domain, bus, slot, and function.

4. Change to the mdev _supported types directory for the virtual function on which you want
to create the vGPU.
cd /sys/class/mdev_bus/domain\:bus\:vf-slot.v-function/mdev_supported types/
domain
bus
The domain and bus of the GPU, without the 0x prefix.
vf-slot
v-function
The slot and function of the virtual function.

This example changes to the mdev_supported types directory for the first virtual
function (virt£no) for the GPU with the domain 0000 and bus 41. The first virtual function
(virt£no) has slot 00 and function 4.
cd /sys/class/mdev_bus/0000\:41\:00.4/mdev_supported types
5. Find out which subdirectory of mdev_supported types contains registration information
for the vGPU type that you want to create.
grep -1 "vgpu-type" nvidia-*/name
vgpu-type
The vGPU type, for example, 240-20.
This example shows that the registration information for the A40-2Q vGPU type is
contained in the nvidia-558 subdirectory of mdev_supported types.
grep -1 "A40-2Q" nvidia-*/name
nvidia-558/name
6. Confirm that you can create an instance of the vGPU type on the virtual function.

cat subdirectory/available_instances
subdirectory
The subdirectory that you found in the previous step, for example, nvidia-558.

The number of available instances must be 1. If the numberis 0, a vGPU has already been
created on the virtual function. Only one instance of any vGPU type can be created on a
virtual function.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 55

Installing and Configuring NVIDIA Virtual GPU Manager

This example shows that an instance of the A40-2Q vGPU type can be created on the virtual
function.

cat nvidia-558/available_instances
1

7. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.
uuidgen
2a618089-8b16-4d01-a136-25a0£3c73123
8. Write the UUID that you obtained in the previous step to the create file in the registration
information directory for the vGPU type that you want to create.
echo "uuid"> subdirectory/create
uuid
The UUID that you generated in the previous step, which will become the UUID of the
vGPU that you want to create.
subdirectory
The registration information directory for the vGPU type that you want to create, for
example, nvidia-558.

This example creates an instance of the A40-2Q vGPU type with the UUID
2a618089-8bl16-4d01-al136-25a0£3c73123.
echo "aa618089-8b16-4d01-al36-25a0£3¢c73123" > nvidia-558/create

An mdev device file for the vGPU is added to the parent virtual function directory of the
vGPU. The vGPU is identified by its UUID.

9. Time-sliced vGPUs only: Make the mdev device file that you created to represent the vGPU
persistent.
mdevctl define --auto --uuid uuid
uuid
The UUID that you specified in the previous step for the vGPU that you are creating.

@ Note:

» If you are using a GPU that supports SR-10V, the mdev device file persists after a host
reboot only if you perform Step 1 before rebooting any VM that is configured with a
vGPU on the GPU.

» You cannot use the mdevctl command to make the mdev device file for a MIG-backed
vGPU persistent. The mdev device file for a MIG-backed vGPU is not retained after the
host is rebooted because MIG instances are no longer available.

» Not all Linux with KVM hypervisor releases include the mdevctl command. If your
release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host is
booted. For example, you can write a custom script that is executed when the host is
rebooted.

10.Confirm that the vGPU was created.

a). Confirm that the /sys/bus/mdev/devices/ directory contains a symbolic link to the
mdev device file.

1s -1 /sys/bus/mdev/devices/

total O

lrwxrwxrwx. 1 root root 0 Jul 16 05:57 aa618089-8b16-4d01-al36-25a0f3c73123
-> ../../../devices/pci0000:40/0000:40:01.1/0000:41:00.4/2a618089-8b16-4d01-

al36-25a0f3c73123

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 56

Installing and Configuring NVIDIA Virtual GPU Manager

b). If your release includes the mdevctl command, list the active mediated devices on the
hypervisor host.

mdevctl list
aa618089-8b16-4d01-al136-25a0£3¢c73123 0000:06:00.0 nvidia-558

2.10.3. Adding One or More vGPUs to a Linux with
KVM Hypervisor VM

To support applications and workloads that are compute or graphics intensive, you can add
multiple vGPUs to a single VM.

For details about which hypervisor versions and NVIDIA vGPUs support the assignment of
multiple vGPUs to a VM, see Virtual GPU Software for Red Hat Enterprise Linux with KVM Release
Notes and Virtual GPU Software for Ubuntu Release Notes.

Ensure that the following prerequisites are met:

» The VM to which you want to add the vGPUs is shut down.

» The vGPUs that you want to add have been created as explained in Creating an NVIDIA
vGPU on a Linux with KVYM Hypervisor.

You can add vGPUs to a Linux with KVM hypervisor VM by using any of the following tools:
» The virsh command

» The QEMU command line
After adding vGPUs to a Linux with KVYM hypervisor VM, start the VM.

virsh start vm-name
vm-name

The name of the VM that you added the vGPUs to.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.10.3.1. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using virsh

1. Invirsh, open for editing the XML file of the VM that you want to add the vGPU to.
virsh edit vm-name
vm-name
The name of the VM to that you want to add the vGPUs to.

2. For each vGPU that you want to add to the VM, add a device entry in the form of an
address element inside the source element to add the vGPU to the guest VM.

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='uuid'/>
</source>
</hostdev>

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 57

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

</device>
uuid
The UUID that was assigned to the vGPU when the vGPU was created.

This example adds a device entry for the vGPU with the UUID a618089-8b16-4d01-
al36-25a0£f3c73123

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='a618089-8b16-4d01-al36-25a0£3¢c73123"'/>
</source>
</hostdev>
</device>

This example adds device entries for two vGPUs with the following UUIDs:

> c73f1£fa6-489e-4834-9476-d70dabd98c40
> 3b356d38-854e-48be-b376-00c72c7d119¢c

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='c73f1fa6-489e-4834-9476-d70dabd98c40"'/>
</source>
</hostdev>
<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='3b356d38-854e-48be-b376-00c72c7d119c"'/>
</source>
</hostdev>
</device>
3. Optional: Add a video element that contains a model element in which the type attribute
is set to none.

<video>

<model type='none'/>

</video>

Adding this video element prevents the default video device that 1ibvirt adds from
being loaded into the VM. If you don't add this video element, you must configure the
Xorg server or your remoting solution to load only the vGPU devices you added and not the
default video device.

2.10.3.2. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using the QEMU Command Line

Add the following options to the QEMU command line:

» For each vGPU that you want to add to the VM, add one -device option in the following
format:

-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/vgpu-uuid
vgpu-uuid
The UUID that was assigned to the vGPU when the vGPU was created.

» Adda -uuid option to specify the VM as follows:

—uuid vm-uuid

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 58

Installing and Configuring NVIDIA Virtual GPU Manager

vm-uuid
The UUID that was assigned to the VM when the VM was created.

This example adds the vGPU with the UUID 2a618089-8b16-4d01-a136-25a0f3c73123 to
the VM with the UUID ebb10a6e-7ac9-49%aa-af92-f56bb8c65893.

-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/aa618089-8b16-4d01-
al36-25a0f3c73123 \
-uuid ebbllabe-7ac9-49%aa-af92-£56bb8c65893

This example adds device entries for two vGPUs with the following UUIDs:
> 676428a0-2445-499f-9bfd-65cd4adbdl8f
> 6c5954b8-5bcl-4769-b820-8099feb50aaba

The entries are added to the VM with the UUID ec5e8ee0-657c-4db6-8775-
da70e332co67e.

-device vfio-pci,sysfsdev=/sys/bus/mdev/
devices/676428a0-2445-499f-9bfd-65cd4a9bd18f \

-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/6c5954b8-5bcl-4769-
b820-8099fe50aaba \

-uuid ec5e8ee0-657c-4db6-8775-da70e332c67e

2.10.4. Setting vGPU Plugin Parameters on a Linux
with KVM Hypervisor

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate limiter
(FRL) configuration in frames per second or whether console virtual network computing

(VNC] for the vGPU is enabled. The VM to which the vGPU is assigned is started with these
parameters. If parameters are set for multiple vGPUs assigned to the same VM, the VM is
started with the parameters assigned to each vGPU.

For each vGPU for which you want to set plugin parameters, perform this task in a Linux
command shell on the Linux with KVM hypervisor host.

1. Change to the nvidia subdirectory of the mdev device directory that represents the vGPU.
cd /sys/bus/mdev/devices/uuid/nvidia
uuid
The UUID of the vGPU, for example, 2a618089-8b16-4d01-a136-25a0£3c73123.
2. Write the plugin parameters that you want to set to the vgpu params file in the directory
that you changed to in the previous step.
echo "plugin-config-params" > vgpu_params
plugin-config-params
A comma-separated list of parameter-value pairs, where each pair is of the form
parameter-name=value.

This example disables frame rate limiting and console VNC for a vGPU.

echo "frame rate limiter=0, disable_vnc=1" > vgpu_params

This example enables unified memory for a vGPU.

echo "enable uvm=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit debuggers for a vGPU.

echo "enable_debugging=1" > vgpu params

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 59

Installing and Configuring NVIDIA Virtual GPU Manager

This example enables NVIDIA CUDA Toolkit profilers for a vGPU.

echo "enable profiling=1" > vgpu params

To clear any vGPU plugin parameters that were set previously, write a space to the
vgpu_params file for the vGPU.

echo " " > vgpu params
2.10.5. Deleting a vGPU on a Linux with KVM
Hypervisor

For each vGPU that you want to delete, perform this task in a Linux command shell on the
Linux with KVM hypervisor host.

Before you begin, ensure that the following prerequisites are met:

> You have the domain, bus, slot, and function of the GPU where the vGPU that you want to
delete resides. For instructions, see Getting the BDF and Domain of a GPU on a Linux with
KVM Hypervisor.

» The VM to which the vGPU is assigned is shut down.

1. Change to the mdev_supported types directory for the physical GPU.

cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported types/
domain

bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev supported types directory for the GPU with the PCI
device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported types/
2. Change to the subdirectory of mdev_supported types that contains registration
information for the vGPU.
ed “find . -type d -name uuid’
uuid
The UUID of the vGPU, for example, 2a618089-8b16-4d01-a136-25a0£3c73123.
3. Write the value 1 to the remove file in the registration information directory for the vGPU
that you want to delete.

echo "1" > remove

S| Note: On the Red Hat Virtualization (RHV) kernel, if you try to remove a vGPU device while
its VM is running, the vGPU device might not be removed even if the remove file has been
written to successfully. To confirm that the vGPU device is removed, confirm that the UUID
of the vGPU is not found in the sys£s file system.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 60

Installing and Configuring NVIDIA Virtual GPU Manager

2.10.6. Preparing a GPU Configured for Pass-
Through for Use with vGPU

The mode in which a physical GPU is being used determines the Linux kernel module to which
the GPU is bound. If you want to switch the mode in which a GPU is being used, you must
unbind the GPU from its current kernel module and bind it to the kernel module for the new
mode. After binding the GPU to the correct kernel module, you can then configure it for vGPU.

A physical GPU that is passed through to a VM is bound to the vfio-pci kernel module. A
physical GPU that is bound to the vfio-pci kernel module can be used only for pass-through.
To enable the GPU to be used for vGPU, the GPU must be unbound from vfio-pci kernel
module and bound to the nvidia kernel module.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU that you
are preparing for use with vGPU. For instructions, see Getting the BDF and Domain of a GPU
on a Linux with KVM Hypervisor.

1. Determine the kernel module to which the GPU is bound by running the 1spci command
with the -k option on the NVIDIA GPUs on your host.
lspci -d 10de: -k

The Kernel driver in use: field indicates the kernel module to which the GPU is
bound.

The following example shows that the NVIDIA Tesla M60 GPU with BDF 06:00.0 is bound
to the vfio-pci kernel module and is being used for GPU pass through.

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)
Subsystem: NVIDIA Corporation Device 115e
Kernel driver in use: vfio-pci

2. Unbind the GPU from vfio-pci kernel module.

a). Change to the sysfs directory that represents the vfio-pci kernel module.
ed /sys/bus/pci/drivers/vfio-pci
b). Write the domain, bus, slot, and function of the GPU to the unbind file in this directory.
echo domain:bus:slot.function > unbind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the domain
0000 and PCl device BDF 06:00.0.
echo 0000:06:00.0 > unbind

3. Bind the GPU to the nvidia kernel module.

a). Change to the sysfs directory that contains the PCI device information for the physical
GPU.

cd /sys/bus/pci/devices/domain\:bus\:slot. function

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 61

Installing and Configuring NVIDIA Virtual GPU Manager

domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the sysfs directory that contains the PCI device information
for the GPU with the domain 0000 and PCl device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0
b). Write the kernel module name nvidia to the driver override file in this directory.
echo nvidia > driver_override
c). Change to the sysfs directory that represents the nvidia kernel module.
cd /sys/bus/pci/drivers/nvidia
d). Write the domain, bus, slot, and function of the GPU to the bind file in this directory.
echo domain:bus:slot.function > bind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the domain
0000 and PCl device BDF 06:00.0.
echo 0000:06:00.0 > bind

You can now configure the GPU with vGPU as explained in Installing and Configuring the
NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM or RHV.

2.10.7. NVIDIA vGPU Information in the sysfs File
System

Information about the NVIDIA vGPU types supported by each physical GPU in a Linux with KVM
hypervisor host is stored in the sysfs file system.

All physical GPUs on the host are registered with the mdev kernel module. Information about
the physical GPUs and the vGPU types that can be created on each physical GPU is stored in
directories and files under the /sys/class/mdev_bus/ directory.

The sysfs directory for each physical GPU is at the following locations:
» /sys/bus/pci/devices/

> /sys/class/mdev_bus/

Both directories are a symbolic link to the real directory for PCl devices in the sysfs file
system.

The organization the sysfs directory for each physical GPU is as follows:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 62

Installing and Configuring NVIDIA Virtual GPU Manager

/sys/class/mdev_bus/
| -parent-physical-device
| -mdev_ supported types
|-nvidia-vgputype-id
|-available instances
| -create
| -description
|-device api
| -devices
| —name

parent-physical-device

Each physical GPU on the host is represented by a subdirectory of the /sys/class/
mdev_bus/ directory.

The name of each subdirectory is as follows:
domain\:bus\:slot.function

domain, bus, slot, function are the domain, bus, slot, and function of the GPU, for example,
0000\:06\:00.0

Each directory is a symbolic link to the real directory for PCl devices in the sysfs file
system. For example:

11 /sys/class/mdev_bus/

total O

lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:05:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:08.0/0000:05:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:06:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:07:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:10.0/0000:07:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:08:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:11.0/0000:08:00.0

mdev_supported types
A directory named mdev_supported types is required under the sysfs directory for each
physical GPU that will be configured with NVIDIA vGPU. How this directory is created for a
GPU depends on whether the GPU supports SR-I0V.

» Fora GPU that does not support SR-10V, this directory is created automatically after the
Virtual GPU Manager is installed on the host and the host has been rebooted.

» Fora GPU that supports SR-10V, such as a GPU based on the NVIDIA Ampere
architecture, you must create this directory by enabling the virtual function for the
GPU as explained in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor. The
mdev supported types directory itself is never visible on the physical function.

The mdev_supported types directory contains a subdirectory for each vGPU type that the
physical GPU supports. The name of each subdirectory is nvidia-vgputype-id, where
vgputype-id is an unsigned integer serial number. For example:

11 mdev_supported_types/
total 0

drwxr-xr-x 3 root root 0 Dec 6 01:37 nvidia-35
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-36
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-37
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-38
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-39
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-40
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-41
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-42
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-43

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 63

Installing and Configuring NVIDIA Virtual GPU Manager

drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-44
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-45

nvidia-vgputype-id
Each directory represents an individual vGPU type and contains the following files and
directories:
available_ instances
This file contains the number of instances of this vGPU type that can still be created.
This file is updated any time a vGPU of this type is created on or removed from the
physical GPU.

@ Note: When a time-sliced vGPU is created, the content of the available instances for
all other time-sliced vGPU types on the physical GPU is set to 0. This behavior enforces
the requirement that all time-sliced vGPUs on a physical GPU must be of the same type.
However, this requirement does not apply to MIG-backed vGPUs. Therefore, when a MIG-
backed vGPU is created, available instances for all other MIG-backed vGPU types on
the physical GPU is not set to 0

create
This file is used for creating a vGPU instance. A vGPU instance is created by writing the
UUID of the vGPU to this file. The file is write only.

description
This file contains the following details of the vGPU type:

» The maximum number of virtual display heads that the vGPU type supports
» The frame rate limiter (FRL) configuration in frames per second

» The frame buffer size in Mbytes

» The maximum resolution per display head

» The maximum number of vGPU instances per physical GPU

For example:

cat description
num heads=4, frl config=60, framebuffer=2048M, max resolution=4096x2160,
max instance=4

device_api
This file contains the string vfio pci to indicate that a vGPU is a PCl device.
devices
This directory contains all the mdev devices that are created for the vGPU type. For
example:

11 devices
total O
lrwxrwxrwx 1 root root 0 Dec 6 01:52 2a618089-8b16-4d01-al36-25a0£3c73123 -
> ../../../2a618089-8b16-4d01-a136-25a0£3c73123
name
This file contains the name of the vGPU type. For example:

cat name
GRID M10-2Q

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 64

Installing and Configuring NVIDIA Virtual GPU Manager

2.11. Configuring a GPU for MIG-Backed
vGPUs

To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG mode
enabled and GPU instances must be created and configured on the physical GPU. Optionally,
you can create compute instances within the GPU instances. If you don't create compute

instances within the GPU instances, they can be added later for individual vGPUs from within
the guest VMs.

Ensure that the following prerequisites are met:

» The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

> You have root user privileges on your hypervisor host machine.

> You have determined which GPU instances correspond to the vGPU types of the MIG-
backed vGPUs that you will create.
To get this information, consult the table of MIG-backed vGPUs for your GPU in Virtual
GPU Types for Supported GPUs.

» The GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

To configure a GPU for MIG-backed vGPUs, follow these instructions:

1. Enabling MIG Mode for a GPU

S Note: For VMware vSphere, only enabling MIG mode is required because VMware vSphere
creates the GPU instances and, after the VM is booted and guest driver is installed, one
compute instance is automatically created in the VM.
2. Creating GPU Instances on a MIG-Enabled GPU

3. Optional: Creating Compute Instances in a GPU instance

After configuring a GPU for MIG-backed vGPUs, create the vGPUs that you need and add them
to their VMs.

2.11.1. Enabling MIG Mode for a GPU

Perform this task in your hypervisor command shell.

1. Open a command shell as the root user on your hypervisor host machine.

On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

2. Determine whether MIG mode is enabled.

Use the nvidia-smi command for this purpose. By default, MIG mode is disabled.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 65

Installing and Configuring NVIDIA Virtual GPU Manager

This example shows that MIG mode is disabled on GPU O.

S Note: In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to as
A100-SXM4-40GB.

S nvidia-smi -i 0

e i +
| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 CUDA Version: 11.4 |
|——m o o +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
+ +		

0 Al00-SXM4-40GB On	00000000:36:00.0 Off	0
N/A 29C PO 62W / 400W	OMiB / 40537MiB	6% Default
		Disabled
it ettt e e o B ettt e +

3. If MIG mode is disabled, enable it.
$ nvidia-smi -i [gpu-ids] -mig 1
gpu-ids
A comma-separated list of GPU indexes, PCl bus IDs or UUIDs that specifies the GPUs
on which you want to enable MIG mode. If gpu-ids is omitted, MIG mode is enabled on
all GPUs on the system.

This example enables MIG mode on GPU 0.

$ nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

Note: If the GPU is being used by another process, this command fails and displays
a warning message that MIG mode for the GPU is in the pending enable state. In this
situation, stop all processes that are using the GPU and retry the command.

4. VMware vSphere ESXi only: Reboot the hypervisor host.
5. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is enabled.

This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated values
(CSV) format.

$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus id, mig.mode.current
00000000:36:00.0, Enabled

2.11.2. Creating GPU Instances on a MIG-Enabled
GPU

S Note: If you are using VMware vSphere, omit this task. VMware vSphere creates the GPU
instances automatically.

Perform this task in your hypervisor command shell.

1. If necessary, open a command shell as the root user on your hypervisor host machine.
2. List the GPU instance profiles that are available on your GPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 66

Installing and Configuring NVIDIA Virtual GPU Manager

You will need to specify the profiles by their IDs, not their names, when you create them.

$ nvidia-smi mig -1lgip

o +
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
| |
| 0 MIG 1g.5gb 19 7/7 4.95 No 14 0 0o |
| 1 0 0 |
T T T i +
| 0 MIG 2g.10gb 14 3/3 9.90 No 28 1 0|
| 2 0 0 |
e +
| 0 MIG 3g.20gb 9 2/2 19.79 No 42 2 0 |
| 3 0 0 |
T T ettt +
| 0 MIG 4g.20gb 5 1/1 19.79 No 56 2 0 |
| 4 0 0 |
o +
| 0 MIG 7g.40gb 0 1/1 39.59 No 98 5 0|
| 7 1 1 |
T T T i +

3. Create the GPU instances that correspond to the vGPU types of the MIG-backed vGPUs
that you will create.
$ nvidia-smi mig -cgi gpu-instance-profile-ids
gpu-instance-profile-ids
A comma-separated list of GPU instance profile IDs that specifies the GPU instances
that you want to create.

This example creates two GPU instances of type 2g.10gb, which has profile ID 14.

$ nvidia-smi mig -cgi 14,14

Successfully created GPU instance ID 5 on GPU 2 using profile MIG 2g.10gb (ID
14)

Successfully created GPU instance ID 3 on GPU 2 using profile MIG 2g.10gb (ID
14)

2.11.3. Optional: Creating Compute Instances in a
GPU instance

Creating compute instances within GPU instances is optional. If you don’t create compute
instances within the GPU instances, they can be added later for individual vGPUs from within
the guest VMs.

S Note: If you are using VMware vSphere, omit this task. After the VM is booted and guest driver
is installed, one compute instance is automatically created in the VM.

Perform this task in your hypervisor command shell.

1. If necessary, open a command shell as the root user on your hypervisor host machine.
2. List the available GPU instances.

S nvidia-smi mig -1lgi
- +
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
| |

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 67

Installing and Configuring NVIDIA Virtual GPU Manager

3. Create the compute instances that you need within each GPU instance.
$ nvidia-smi mig -cci -gi gpu-instance-ids
gpu-instance-ids
A comma-separated list of GPU instance IDs that specifies the GPU instances within
which you want to create the compute instances.

CAUTION: To avoid an inconsistent state between a guest VM and the hypervisor host, do
not create compute instances from the hypervisor on a GPU instance on which an active
guest VM is running. Instead, create the compute instances from within the guest VM as
explained in Modifying a MIG-Backed vGPU's Configuration.

This example creates a compute instance on each of GPU instances 3 and 5.

$ nvidia-smi mig -cci -gi 3,5
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile

ID 2
Successfully created compute instance on GPU 0 GPU instance ID 2 using profile
ID 2

4. Verify that the compute instances were created within each GPU instance.

S nvidia-smi

o o o o +
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG]
		ECC	
t dk +			
2 3 0 0	OMiB / 9984MiB	28 o] 2 0 1 0 0	
	OMiB / 16383MiB		
- - - - +
| 2 5 0 1 OMiB / 9984MiB | 28 01| 2 0 1 0 0 |
| | OMiB / 16383MiB | | |
- o - - +
e +
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| D D Usage |
| |

S Note: Additional compute instances that have been created in a VM are destroyed when
the VM is shut down or rebooted. After the shutdown or reboot, only one compute instance
remains in the VM. This compute instance is created automatically after the NVIDIA vGPU
software graphics driver is installed.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 68

Installing and Configuring NVIDIA Virtual GPU Manager

2.12. Disabling MIG Mode for One or More

GPUs

If a GPU that you want to use for time-sliced vGPUs or GPU pass through has previously been
configured for MIG-backed vGPUs, disable MIG mode on the GPU.

Ensure that the following prerequisites are met:

>

>

>

The NVIDIA Virtual GPU Manager is installed on the hypervisor host.
You have root user privileges on your hypervisor host machine.

The GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

Perform this task in your hypervisor command shell.

1.

Open a command shell as the root user on your hypervisor host machine.

You can use secure shell (SSH] for this purpose.

Determine whether MIG mode is disabled.

Use the nvidia-smi command for this purpose. By default, MIG mode is disabled, but
might have previously been enabled.

This example shows that MIG mode is enabled on GPU 0.

S| Note: In the output from output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is
referred to as A100-SXM4-40GB.

$ nvidia-smi -i 0

o +
| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 CUDA Version: 11.4 |
|- ——— o —— o 4
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
+ +		
0 Al00-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C PO 62W / 400W	OMiB / 40537MiB	6% Default
		Enabled
e it it e o B et e T +

If MIG mode is enabled, disable it.

$ nvidia-smi -i [gpu-ids] -mig O

gpu-ids
A comma-separated list of GPU indexes, PCl bus I1Ds or UUIDs that specifies the GPUs
on which you want to disable MIG mode. If gpu-ids is omitted, MIG mode is disabled on
all GPUs on the system.

This example disables MIG mode on GPU 0.

$ sudo nvidia-smi -i 0 -mig 0
Disabled MIG Mode for GPU 00000000:36:00.0
All done.

4. Confirm that MIG mode was disabled.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 69

Installing and Configuring NVIDIA Virtual GPU Manager

Use the nvidia-smi command for this purpose.

This example shows that MIG mode is disabled on GPU O.

S nvidia-smi -i 0

e +
| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 CUDA Version: 11.4 |
|——m o B e ittt +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap] Memory-Usage	GPU-Util Compute M.	
		MIG M.
f ;		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C PO 62W / 400W	OMiB / 40537MiB	6% Default
		Disabled
e o B it L L L +

2.13. Disabling and Enabling ECC Memory

Some GPUs that support NVIDIA vGPU software support error correcting code (ECC) memory
with NVIDIA vGPU. ECC memory improves data integrity by detecting and handling double-
bit errors. However, not all GPUs, vGPU types, and hypervisor software versions support ECC
memory with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-
series and Q-series vGPUs, but not with A-series and B-series vGPUs. Although A-series and
B-series vGPUs start on physical GPUs on which ECC memory is enabled, enabling ECC with
vGPUs that do not support it might incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is usable
by vGPUs is reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:
» ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.

» In VMs that support ECC memory, ECC memory is enabled, with the option to disable ECC
in the VM.

» ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC
memory in a VM does not affect the amount of frame buffer that is usable by vGPUs.

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC
memory with NVIDIA vGPU. To determine whether ECC memory is enabled for a GPU, run
nvidia-smi -q for the GPU.

Tesla M60 and M6 GPUs support ECC memory when used without GPU virtualization, but
NVIDIA vGPU does not support ECC memory with these GPUs. In graphics mode, these GPUs
are supplied with ECC memory disabled by default.

Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.

If you are using a hypervisor software version or GPU that does not support ECC memory with
NVIDIA vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this situation, you
must ensure that ECC memory is disabled on all GPUs if you are using NVIDIA vGPU.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 70

Installing and Configuring NVIDIA Virtual GPU Manager

2.13.1. Disabling ECC Memory

If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it. You
must also ensure that ECC memory is disabled on all GPUs if you are using NVIDIA vGPU with
a hypervisor software version or a GPU that does not support ECC memory with NVIDIA vGPU.
If your hypervisor software version or GPU does not support ECC memory and ECC memory is
enabled, NVIDIA vGPU fails to start.

Where to perform this task depends on whether you are changing ECC memory settings for a
physical GPU or a vGPU.

» Fora physical GPU, perform this task from the hypervisor host.
» ForavGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU
software graphics driver is installed in the VM to which the vGPU is assigned.

1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC noted
as enabled.

nvidia-smi -gq

NVSMI LOG
Timestamp : Mon Aug 15 18:36:45 2022
Driver Version : 470.141.05
Attached GPUs : 1

GPU 0000:02:00.0

[...]

Ecc Mode
Current : Enabled
Pending : Enabled

[...]
2. Change the ECC status to off for each GPU for which ECC is enabled.

» If you want to change the ECC status to off for all GPUs on your host machine or vGPUs
assigned to the VM, run this command:
nvidia-smi -e 0

» If you want to change the ECC status to off for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 0

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example disables ECC for the GPU with index 0000:02:00. 0.
nvidia-smi -i 0000:02:00.0 -e 0
3. Reboot the host or restart the VM.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 71

Installing and Configuring NVIDIA Virtual GPU Manager

4. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

NVSMI LOG
Timestamp : Mon Aug 15 18:37:53 2022
Driver Version : 470.141.05
Attached GPUs g 1

GPU 0000:02:00.0
[oool

Ecc Mode
Current : Disabled
Pending : Disabled

[oool

If you later need to enable ECC on your GPUs or vGPUs, follow the instructions in Enabling
ECC Memory.

2.13.2. Enabling ECC Memory

If ECC memory is suitable for your workloads and is supported by your hypervisor software
and GPUs, but is disabled on your GPUs or vGPUs, enable it.

Where to perform this task depends on whether you are changing ECC memory settings for a
physical GPU or a vGPU.

» For a physical GPU, perform this task from the hypervisor host.
» ForavGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU
software graphics driver is installed in the VM to which the vGPU is assigned.

1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC noted
as disabled.

nvidia-smi -gq

NVSMI LOG
Timestamp : Mon Aug 15 18:36:45 2022
Driver Version : 470.141.05
Attached GPUs g 1

GPU 0000:02:00.0

[oool

Ecc Mode
Current : Disabled
Pending : Disabled

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 72

Installing and Configuring NVIDIA Virtual GPU Manager

2. Change the ECC status to on for each GPU or vGPU for which ECC is enabled.

» If you want to change the ECC status to on for all GPUs on your host machine or vGPUs
assigned to the VM, run this command:
nvidia-smi -e 1

» If you want to change the ECC status to on for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 1

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example enables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 1

3. Reboot the host or restart the VM.

4. Confirm that ECC is now enabled for the GPU or vGPU.

nvidia—smi —q

NVSMI LOG
Timestamp : Mon Aug 15 18:37:53 2022
Driver Version : 470.141.05
Attached GPUs : 1

GPU 0000:02:00.0
[oool

Ecc Mode
Current : Enabled
Pending : Enabled

[...]

If you later need to disable ECC on your GPUs or vGPUs, follow the instructions in Disabling
ECC Memory.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 73

Chapter 3. Using GPU Pass-Through

GPU pass-through is used to directly assign an entire physical GPU to one VM, bypassing the
NVIDIA Virtual GPU Manager. In this mode of operation, the GPU is accessed exclusively by the
NVIDIA driver running in the VM to which it is assigned; the GPU is not shared among VMs.

In pass-through mode, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture support error-correcting code (ECC].

GPU pass-through can be used in a server platform alongside NVIDIA vGPU, with some
restrictions:

» A physical GPU can host NVIDIA vGPUs, or can be used for pass-through, but cannot do
both at the same time. Some hypervisors, for example VMware vSphere ESXI, require a
host reboot to change a GPU from pass-through mode to vGPU mode.

» Asingle VM cannot be configured for both vGPU and GPU pass-through at the same time.

» The performance of a physical GPU passed through to a VM can be monitored only from
within the VM itself. Such a GPU cannot be monitored by tools that operate through the
hypervisor, such as XenCenter or nvidia-smi (see Monitoring GPU Performance).

» The following BIOS settings must be enabled on your server platform:
» VT-D/IOMMU
» SR-10V in Advanced Options

» All GPUs directly connected to each other through NVLink must be assigned to the same
VM.

S| Note: If you intend to configure all GPUs in your server platform for pass-through, you do not
need to install the NVIDIA Virtual GPU Manager.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 74

Using GPU Pass-Through

3.1. Display Resolutions for Physical
GPUs

The display resolutions supported by a physical GPU depend on the NVIDIA GPU architecture
and the NVIDIA vGPU software license that is applied to the GPU.

vWS Physical GPU Resolutions

GPUs that are licensed with a VWS license support a maximum combined resolution based on
the number of available pixels, which is determined by the NVIDIA GPU architecture. You can
choose between using a small number of high resolution displays or a larger number of lower
resolution displays with these GPUs.

The following table lists the maximum number of displays per GPU at each supported display
resolution for configurations in which all displays have the same resolution.

NVIDIA GPU
Available Pixel Display Resoluti Displ P
Architecture vailable Pixels isplay Resolution isplays per GPU
7680x4320 2
Pascal and later 66355200
51202880 or lower 4
5120x2880 2
Maxwell 35389440
4096x2160 or lower 4

The following table provides examples of configurations with a mixture of display resolutions.

NVIDIA GPU Available Available Pixel Maximum Sample Mixed Display
Architecture Pixels Basis Displays Configurations
Pascal and later | 66355200 | 2 7680x4320 displays 4 1 7680%x4320 display plus

2 5120x2880 displays

1 7680%x4320 display plus
3 4096x2160 displays

Maxwell 35389440 | 4 4096x2160 displays | 4 1 5120x2880 display plus
2 4096x2160 displays

S Note: You cannot use more than four displays even if the combined resolution of the displays
is less than the number of available pixels from the GPU. For example, you cannot use five
4096x2160 displays with a GPU based on the NVIDIA Pascal architecture even though the
combined resolution of the displays (44236800] is less than the number of available pixels from
the GPU (66355200).

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 75

Using GPU Pass-Through

vApps or vCS Physical GPU Resolutions

GPUs that are licensed with a vApps or a vCS license support a single display with a fixed
maximum resolution. The maximum resolution depends on the following factors:

» NVIDIA GPU architecture
» The NVIDIA vGPU Software license that is applied to the GPU

» The operating system that is running in the on the system to which the GPU is assigned

License NVIPIA GPU T i Frsian Maximum D.isplay Displays
Architecture Resolution per GPU
vApps Pascal or later | Linux 2560x1600 1
Pascal or later | Windows 1280x1024 1
Maxwell Windows and Linux | 2560x1600 1
vCS Pascal or later | Linux 4096%x2160 1

3.2. Using GPU Pass-Through on Citrix
Hypervisor

You can configure a GPU for pass-through on Citrix Hypervisor by using XenCenter or by using
the xe command.

The following additional restrictions apply when GPU pass-through is used in a server
platform alongside NVIDIA vGPU:

» The performance of a physical GPU passed through to a VM cannot be monitored through
XenCenter.

» nvidia-smi in dom0 no longer has access to the GPU.

» Pass-through GPUs do not provide console output through XenCenter’s VM Console tab.
Use a remote graphics connection directly into the VM to access the VM's OS.

3.2.1. Configuring a VM for GPU Pass Through by
Using XenCenter

Select the Pass-through whole GPU option as the GPU type in the VM’s Properties:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 76

Using GPU Pass-Through

Figure 16. Using XenCenter to configure a pass-through GPU

) XenCenter =&
File View Pool Sever VM Storage Templates Tools Help
@ Back + () Forward - | [@ Add New Server New Pool 5 New Storage 1] NewvM | @) Start (3 Reboot ([} Suspend
search Q/[B RS1-Server-RTM-NMOS on 'xs-72' Logged in as: Local root accou
= ¢ XenCenter =
SR s = General | Memory | Storage | Networking | Console | Performance | Snapshots | search |
[Rs1-Server-RT|
B Rs1-Server-RT] ALACEIEELE) Rs1-Server-RTM-NMOS' Properties PR |
5 DVD drives
Local storage -_P[upgrues General
5 Removable stc RSL-Server-RTM-NMOS GRS
5 Rt-ServerRT p— = Custom Fields
2@ xs72 EuEE <None> You can improve graphics performance by assigning a virtual graphics processing unit to this
it e
@ Rst-Server-RT 4vCPU(S)
[E8 Rs1-Server-RT Description: @ Boot Options GPU type: GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays) H
[Rs1-server-RT Tags: S(Ba‘f_[ogz'gs;sD/D'D’ ve, Hard. GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays) -
@ Rst-Server-RT] B GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display)
[RS1-Server-RT Folder: HA is not available on stand. D tisessel — pted.
1 rerserver 1= o Alers GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
B rot-server&T] Operating System: None defined @ Iftherei: GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display) to'start
% Ubuntu xenial Virtualization [Home Server GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
@ Win7xs4_cUDY, mode None defined GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display) L
@ Win7x64_CUDZ, = GPU GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays) b
@ Windows10-Re| BIOS strings GRID M60-8Q virtual GPU (1 GRID M60-18 virtual GPU (8 per GPU, 2560x1600, 4 displays)
) DVD drives copied: #, Advanced Options GRID M60-1A virtual GPU (8 per GPU, 1280x1024, 1 display)
Local storage Virtualization state] Optimize for general use GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays) L
5 Removable stc GRID M60-0B virtual GPU (16 per GPU, 2560x1600, 2 displays)
g RHEL 73 o 86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60]...
o Zsb]u:;r;:g Pass-through whole GPU
8 Winrxes b Boot Options GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
& Windows10-R GRID M60-8A virtual GPU (L per GPU, 1280x1024, 1 display)
[Windows10-RS CPUs GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
B localhost - GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
e | GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display)
GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays) ~
A Infrastructure

 ovece

+2, Organization Views

O, saved Searches

A Notifications @)

After configuring a Citrix Hypervisor VM for GPU pass through, install the NVIDIA graphics
driver in the guest OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics
Driver.

3.2.2. Configuring a VM for GPU Pass Through by
Using xe

Create a vgpu object with the passthrough vGPU type:

[root@xenserver ~]# xe vgpu-type-list model-name="passthrough"
uuid (RO) : fa50b0£f0-9705-6c59-689%e-ea62a3d35237
vendor-name (RO):
model-name (RO): passthrough
framebuffer-size (RO): O

[root@xenserver ~]# xe vgpu-create vm-uuid=753e77a9-e10d-7679-£674-65c078abb2eb vgpu-type-
uuid=£fa50b0£0-9705-6c59-689e-ea62a3d35237 gpu-group-uuid=585877ef-5a6c-66af-fc56-7bd525bdc2£f6
6aa530ec-8f27-86bd-b8ed-fedfde8f08£f9

[root@xenserver ~]#

CAUTION: Do not assign pass-through GPUs using the legacy other-config:pci parameter
setting. This mechanism is not supported alongside the XenCenter Ul and xe vgpu
mechanisms, and attempts to use it may lead to undefined results.

After configuring a Citrix Hypervisor VM for GPU pass through, install the NVIDIA graphics
driver in the guest OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics
Driver.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 77

Using GPU Pass-Through

3.3. Using GPU Pass-Through on Red Hat
Enterprise Linux KVM or Ubuntu

You can configure a GPU for pass-through on Red Hat Enterprise Linux Kernel-based Virtual
Machine (KVM] or Ubuntu by using any of the following tools:

» The Virtual Machine Manager (virt-manager) graphical tool
» The virsh command
» The QEMU command line

Before configuring a GPU for pass-through on Red Hat Enterprise Linux KVM or Ubuntu,
ensure that the following prerequisites are met:

» Red Hat Enterprise Linux KVM or Ubuntu is installed.

» Avirtual disk has been created.

Note: Do not create any virtual disks in /root.

» Avirtual machine has been created.

3.3.1. Configuring a VM for GPU Pass-Through
by Using Virtual Machine Manager (virt-
manager]

For more information about using Virtual Machine Manager, see the following topics in the
documentation for Red Hat Enterprise Linux 7:

» Managing Guests with the Virtual Machine Manager [virt-manager)

» Starting virt-manager

» Assigning a PCl Device with virt-manager

1. Start virt-manager.

2. Inthe virt-manager main window, select the VM that you want to configure for pass-
through.

3. From the Edit menu, choose Virtual Machine Details.
4. In the virtual machine hardware information window that opens, click Add Hardware.

5. Inthe Add New Virtual Hardware dialog box that opens, in the hardware list on the left,
select PCl Host Device.

6. From the Host Device list that appears, select the GPU that you want to assign to the VM
and click Finish.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 78

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager.html#sect-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager-Starting_virt_manager
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Guest_virtual_machine_device_configuration.html#sect-PCI_devices-Assigning_a_PCI_device_with_virt_manager

Using GPU Pass-Through

If you want to remove a GPU from the VM to which it is assigned, in the virtual machine
hardware information window, select the GPU and click Remove.

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the guest
0S on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.3.2. Configuring a VM for GPU Pass-Through by

Using virsh

For more information about using virsh, see the following topics in the documentation for
Red Hat Enterprise Linux 7:

»

»

1.

Managing Guest Virtual Machines with virsh

Assigning a PCI Device with virsh

Verify that the vfio-pci module is loaded.

lsmod | grep vfio-pci

Obtain the PCI device bus/device/function (BDF) of the GPU that you want to assign in
pass-through mode to a VM.

lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCl device BDFs 85:00.0 and 86:00.0.

lspci | grep NVIDIA

85:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

Obtain the full identifier of the GPU from its PCI device BDF.

virsh nodedev-list --cap pci| grep transformed-bdf

transformed-bdf
The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 85 00 0.

This example obtains the full identifier of the GPU with the PCI device BDF 85:00. 0.
virsh nodedev-list --cap pci| grep 85_00_0

pci_ 0000 85 00 0

Obtain the domain, bus, slot, and function of the GPU.

virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'
full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci 0000 85 00 0.

This example obtains the domain, bus, slot, and function of the GPU with the PCl device

BDF 85:00.0.

virsh nodedev-dumpxml pci_0000_85 00_O| egrep 'domain|bus|slot|function'
<domain>0x0000</domain>
<bus>0x85</bus>
<slot>0x00</slot>
<function>0x0</function>
<address domain='0x0000' bus='0x85' slot='0x00' function='0x0"'/>

In virsh, open for editing the XML file of the VM that you want to assign the GPU to.

virsh edit vm-name

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 79

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guest_virtual_machines_with_virsh.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Guest_virtual_machine_device_configuration.html#sect-PCI_devices-Assigning_a_PCI_device_with_virsh

Using GPU Pass-Through

vm-name
The name of the VM to that you want to assign the GPU to.

6. Add a device entry in the form of an address element inside the source element to assign
the GPU to the guest VM.

You can optionally add a second address element after the source element to set a fixed
PCl device BDF for the GPU in the guest operating system.

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='domain' bus='bus' slot='slot' function='function'/>
</source>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
</hostdev>

domain
bus
slot
function
The domain, bus, slot, and function of the GPU, which you obtained in the previous step.

This example adds a device entry for the GPU with the PCl device BDF 85:00.0 and fixes
the BDF for the GPU in the guest operating system.

<hostdev mode='subsystem' type='pci' managed='yes'>

<source>
<address domain='0x0000"' bus='0x85"' slot='0x00"' function='0x0"'/>
</source>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05"' function='0x0'/>
</hostdev>

7. Start the VM that you assigned the GPU to.
virsh start vm-name
vm-name
The name of the VM that you assigned the GPU to.

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the guest
0S on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.3.3. Configuring a VM for GPU Pass-Through by
Using the QEMU Command Line

1. Obtain the PCI device bus/device/function (BDF) of the GPU that you want to assign in
pass-through mode to a VM.
lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCl device BDFs 85:00.0 and 86:00.0.

lspci | grep NVIDIA

85:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

2. Add the following option to the QEMU command line:
—-device vfio-pci,host=bdf
bdf
The PCI device BDF of the GPU that you want to assign in pass-through mode to a VM,
for example, 85:00.0.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 80

Using GPU Pass-Through

This example assigns the GPU with the PCl device BDF 85:00.0 in pass-through mode to
a VM.

-device vfio-pci,host=85:00.0

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the guest
0S on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.3.4. Preparing a GPU Configured for vGPU for Use
In Pass-Through Mode

The mode in which a physical GPU is being used determines the Linux kernel module to which
the GPU is bound. If you want to switch the mode in which a GPU is being used, you must
unbind the GPU from its current kernel module and bind it to the kernel module for the new
mode. After binding the GPU to the correct kernel module, you can then configure it for pass-
through.

When the Virtual GPU Manager is installed on a Red Hat Enterprise Linux KVM or Ubuntu host,
the physical GPUs on the host are bound to the nvidia kernel module. A physical GPU that

is bound to the nvidia kernel module can be used only for vGPU. To enable the GPU to be
passed through to a VM, the GPU must be unbound from nvidia kernel module and bound to
the vfio-pci kernel module.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU that

you are preparing for use in pass-through mode. For instructions, see Getting the BDF and
Domain of a GPU on a Linux with KVM Hypervisor.

1. Ifyou are using a GPU that supports SR-10V, such as a GPU based on the NVIDIA Ampere
architecture, disable the virtual function for the GPU in the sysfs file system.

If your GPU does not support SR-10V, omit this step.

Note: Before performing this step, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

Use the custom script sriov-manage provided by NVIDIA vGPU software for this purpose.
/usr/lib/nvidia/sriov-manage -d domain:bus:slot.function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example disables the virtual function for the GPU with the domain 00, bus 06, slot
0000, and function 0.
/usr/lib/nvidia/sriov-manage -d 00:06:0000.0

2. Determine the kernel module to which the GPU is bound by running the 1spci command
with the -k option on the NVIDIA GPUs on your host.
lspci -d 10de: -k

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 81

Using GPU Pass-Through

The Kernel driver in use: field indicates the kernel module to which the GPU is
bound.

The following example shows that the NVIDIA Tesla M60 GPU with BDF 06:00.0 is bound
to the nvidia kernel module and is being used for vGPU.

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)
Subsystem: NVIDIA Corporation Device 115e
Kernel driver in use: nvidia

3. To ensure that no clients are using the GPU, acquire the unbind lock of the GPU.

al. Ensure that no VM is running to which a vGPU on the physical GPU is assigned and that
no process running on the host is using that GPU.

Processes on the host that use the GPU include the nvidia-smi command and all
processes based on the NVIDIA Management Library (NVML].

b). Change to the directory in the proc file system that represents the GPU.
cd /proc/driver/nvidia/gpus/domain\:bus\:slot.function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the directory in the proc file system that represents the GPU
with the domain 0000 and PCI device BDF 06:00.0.
cd /proc/driver/nvidia/gpus/0000\:06\:00.0
c). Write the value 1 to the unbindLock file in this directory.
echo 1 > unbindLock
d). Confirm that the unbindLock file now contains the value 1.
cat unbindLock
1
If the unbindLock file contains the value 0, the unbind lock could not be acquired
because a process or client is using the GPU.

4. Unbind the GPU from nvidia kernel module.

a). Change to the sysfs directory that represents the nvidia kernel module.
ecd /sys/bus/pci/drivers/nvidia
b). Write the domain, bus, slot, and function of the GPU to the unbind file in this directory.
echo domain:bus:slot.function > unbind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the domain
0000 and PCl device BDF 06:00.0.
echo 0000:06:00.0 > unbind

5. Bind the GPU to the vfio-pci kernel module.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 82

al.

b).
cl.

d).

e).

f).

Using GPU Pass-Through

Change to the sysfs directory that contains the PCl device information for the physical
GPU.
cd /sys/bus/pci/devices/domain\:bus\:slot. function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the sysfs directory that contains the PCl device information
for the GPU with the domain 0000 and PCl device BDF 06:00.0.
ecd /sys/bus/pci/devices/0000\:06\:00.0
Write the kernel module name vfio-pci to the driver override file in this directory.
echo vfio-pci > driver override
Change to the sysfs directory that represents the nvidia kernel module.
cd /sys/bus/pci/drivers/vfio-pci
Write the domain, bus, slot, and function of the GPU to the bind file in this directory.
echo domain:bus:slot.function > bind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the domain
0000 and PCl device BDF 06:00.0.

echo 0000:06:00.0 > bind

Change back to the sysfs directory that contains the PCI device information for the
physical GPU.

cd /sys/bus/pci/devices/domain\:bus\:slot. function

Clear the content of the driver override file in this directory.

echo > driver override

You can now configure the GPU for use in pass-through mode as explained in Using GPU
Pass-Through on Red Hat Enterprise Linux KVM or Ubuntu.

3.4.

Using GPU Pass-Through on
Microsoft Windows Server

On supported versons of Microsoft Windows Server with Hyper-V role, you can use Discrete
Device Assignment (DDA] to enable a VM to access a GPU directly.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 83

Using GPU Pass-Through

3.4.1. Assigning a GPU to a VM on Microsoft
Windows Server with Hyper-V

Perform this task in Windows PowerShell. If you do not know the location path of the GPU that
you want to assign to a VM, use Device Manager to obtain it.

If you are using an actively cooled NVIDIA Quadro graphics card such as the RTX 8000 or RTX
6000, you must also pass through the audio device on the graphics card.

Ensure that the following prerequisites are met:

» Windows Server with Desktop Experience and the Hyper-V role are installed and
configured on your server platform, and a VM is created.

For instructions, refer to the following articles on the Microsoft technical documentation

site:

> |nstall Server with Desktop Experience

» |nstall the Hyper-V role on Windows Server

> Create a virtual switch for Hyper-V virtual machines
» Create a virtual machine in Hyper-V

» The guest OSis installed in the VM.
> The VM is powered off.

1. Obtain the location path of the GPU that you want to assign to a VM.

al. In the device manager, context-click the GPU and from the menu that pops up, choose
Properties.

b). In the Properties window that opens, click the Details tab and in the Properties drop-
down list, select Location paths.

An example location path is as follows:

PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)

2. Ifyou are using an actively cooled NVIDIA Quadro graphics card, obtain the location path of
the audio device on the graphics card and disable the device.

al. In the device manager, from the View menu, choose Devices by connection.

b). Navigate to ACPI xé4-based PC > Microsoft ACPI-Compliant System > PCIl Express
Root Complex > PCI-to-PCI Bridge .

c). Context-click High Definition Audio Controller and from the menu that pops up,
choose Properties.

d). In the Properties window that opens, click the Details tab and in the Properties drop-
down list, select Location paths.

e]. Context-click High Definition Audio Controller again and from the menu that pops up,
choose Disable device.

3. Dismount the GPU and, if present, the audio device from host to make them unavailable to
the host so that they can be used solely by the VM.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 84

https://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-server-with-desktop-experience
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/install-the-hyper-v-role-on-windows-server
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/create-a-virtual-switch-for-hyper-v-virtual-machines
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/create-a-virtual-machine-in-hyper-v

Using GPU Pass-Through

For each device that you are dismounting, type the following command:

Dismount-VMHostAssignableDevice -LocationPath gpu-device-location -force
gpu-device-location
The location path of the GPU or the audio device that you obtained previously.

This example dismounts the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000).

Dismount-VMHostAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)" -force

4. Assign the GPU and, if present, the audio device that you dismounted in the previous step
to the VM.

For each device that you are assigning, type the following command:
Add-VMAssignableDevice -LocationPath gpu-device-location -VMName vm-name
gpu-device-location
The location path of the GPU or the audio device that you dismounted in the previous
step.
vm-name
The name of the VM to which you are attaching the GPU or the audio device.

S| Note: You can assign a pass-through GPU and, if present, its audio device to only one
virtual machine at a time.

This example assigns the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000)#PCI (0000) to the VM vM1.

Add-VMAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)" -VMName VM1l

5. Power on the VM.
The guest OS should now be able to use the GPU and, if present, the audio device.

After assigning a GPU to a VM, install the NVIDIA graphics driver in the guest 0S on the VM as
explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.4.2. Returning a GPU to the Host OS from a VM on
Windows Server with Hyper-V

Perform this task in the Windows PowerShell.

If you are using an actively cooled NVIDIA Quadro graphics card such as the RTX 8000 or RTX
6000, you must also return the audio device on the graphics card.

1. List the GPUs and, if present, the audio devices that are currently assigned to the virtual
machine (VM).
Get-VMAssignableDevice -VMName vm-name
vm-name
The name of the VM whose assigned GPUs and audio devices you want to list.

2. Shut down the VM to which the GPU and any audio devices are assigned.
3. Remove the GPU and, if present, the audio device from the VM to which they are assigned.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 85

Using GPU Pass-Through

For each device that you are removing, type the following command:

Remove-VMAssignableDevice -LocationPath gpu-device-location -VMName vm-name
gpu-device-location

The location path of the GPU or the audio device that you are removing, which you
obtained previously.

vm-name
The name of the VM from which you are removing the GPU or the audio device.

This example removes the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) from the VM vM1.

Remove-VMAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000)#PCI (0000)" -VMName VM1l

After the GPU and, if present, its audio device are removed from the VM, they are
unavailable to the host operating system (0S) until you remount them on the host 0S.

Remount the GPU and, if present, its audio device on the host 0S.

For each device that you are remounting, type the following command:
Mount-VMHostAssignableDevice -LocationPath gpu-device-location
gpu-device-location

The location path of the GPU or the audio device that you are remounting, which you
specified in the previous step to remove the GPU or the audio device from the VM.

This example remounts the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) on the host 0S.

Mount-VMHostAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)"

The host OS should now be able to use the GPU and, if present, its audio device.

3.9. Using GPU Pass-Through on VMware

vSphere

On VMware vSphere, you can use Virtual Dedicated Graphics Acceleration (vDGA] to enable
a VM to access a GPU directly. vDGA is a feature of VMware vSphere that dedicates a single
physical GPU on an ESXi host to a single virtual machine.

Before configuring a vSphere VM with vDGA, ensure that these prerequisites are met

>

AR N

The VM and the ESXi host are configured as explained in Preparing for vDGA Capabilities in
the VMware Horizon documentation.

The VM is powered off.

Open the vCenter Web UlI.

In the vCenter Web Ul, right-click the ESXi host and choose Settings.

From the Hardware menu, choose PCI Devices and click the Edit icon.
Select all NVIDIA GPUs and click OK.

Reboot the ESXi host.

After the ESXi host has booted, right-click the VM and choose Edit Settings.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 86

https://docs.vmware.com/en/VMware-Horizon-7/7.12/horizon-virtual-desktops/GUID-41547581-2CAC-40D2-AC9F-962E8D649B5E.html

Using GPU Pass-Through

7. From the New Device menu, choose PCI Device and click Add.
8. On the page that opens, from the New Device drop-down list, select the GPU.

9. Click Reserve all memory and click OK.
10.Start the VM.

For more information about vDGA, see the following topics in the VMware Horizon
documentation:

» Configuring 3D Rendering for Desktops

» Configure RHEL 6 for vDGA

After configuring a vSphere VM with vDGA, install the NVIDIA graphics driver in the guest 0S
on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 87

https://docs.vmware.com/en/VMware-Horizon-7/7.12/horizon-virtual-desktops/GUID-CD8B9D0B-36DC-4C48-82D2-FCE10F71D48F.html
https://docs.vmware.com/en/VMware-Horizon-7/7.12/linux-desktops-setup/GUID-20B2B9C1-690E-4B5C-A7FB-774C7B33BB8C.html

Chapter 4. Installing the NVIDIA vGPU
Software Graphics Driver

The process for installing the NVIDIA vGPU software graphics driver depends on the OS that
you are using. However, for any OS, the process for installing the driver is the same in a VM
configured with vGPU, in a VM that is running pass-through GPU, or on a physical host in a
bare-metal deployment.

After you install the NVIDIA vGPU software graphics driver, you can license any NVIDIA vGPU
software licensed products that you are using.

4.1. Installing the NVIDIA vGPU Software
Graphics Driver on Windows

Installation in a VM: After you create a Windows VM on the hypervisor and boot the VM, the

VM should boot to a standard Windows desktop in VGA mode at 800x600 resolution. You can
use the Windows screen resolution control panel to increase the resolution to other standard
resolutions, but to fully enable GPU operation, the NVIDIA vGPU software graphics driver
must be installed. Windows guest VMs are supported only on Q-series, B-series, and A-series
NVIDIA vGPU types. They are not supported on C-series NVIDIA vGPU types.

Installation on bare metal: When the physical host is booted before the NVIDIA vGPU software
graphics driver is installed, boot and the primary display are handled by an on-board graphics
adapter. To install the NVIDIA vGPU software graphics driver, access the Windows desktop on
the host by using a display connected through the on-board graphics adapter.

The procedure for installing the driver is the same in a VM and on bare metal.

1. Copy the NVIDIA Windows driver package to the guest VM or physical host where you are
installing the driver.

2. Execute the package to unpack and run the driver installer.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 88

Installing the NVIDIA vGPU Software Graphics Driver

Figure 17. NVIDIA driver installation

Installation options
D Eupres

Ophons

R spiel

3. Click through the license agreement.

4. Select Express Installation and click NEXT.
After the driver installation is complete, the installer may prompt you to restart the

platform.
0. If prompted to restart the platform, do one of the following:
» Select Restart Now to reboot the VM or physical host.

» Exit the installer and reboot the VM or physical host when you are ready.

After the VM or physical host restarts, it boots to a Windows desktop.
6. Verify that the NVIDIA driver is running.
a). Right-click on the desktop.
b). From the menu that opens, choose NVIDIA Control Panel.
c). In the NVIDIA Control Panel, from the Help menu, choose System Information.

NVIDIA Control Panel reports the vGPU or physical GPU that is being used, its
capabilities, and the NVIDIA driver version that is loaded.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 89

Installing the NVIDIA vGPU Software Graphics Driver

Figure 18. Verifying NVIDIA driver operation using NVIDIA Control
Panel

Installation in a VM: After you install the NVIDIA vGPU software graphics driver, you can
license any NVIDIA vGPU software licensed products that you are using. For instructions, refer
to Virtual GPU Client Licensing User Guide.

Installation on bare metal: After you install the NVIDIA vGPU software graphics driver,
complete the bare-metal deployment as explained in Bare-Metal Deployment.

4.2. Installing the NVIDIA vGPU Software
Graphics Driver on Linux

Installation in a VM: After you create a Linux VM on the hypervisor and boot the VM, install the
NVIDIA vGPU software graphics driver in the VM to fully enable GPU operation. 64-bit Linux
guest VMs are supported only on Q-series, C-series, and B-series NVIDIA vGPU types. They
are not supported on A-series NVIDIA vGPU types.

Installation on bare metal: When the physical host is booted before the NVIDIA vGPU software
graphics driver is installed, the vesa Xorg driver starts the X server. If a primary display device
is connected to the host, use the device to access the desktop. Otherwise, use secure shell
(SSHJ to log in to the host from a remote host. If the Nouveau driver for NVIDIA graphics

cards is present, disable it before installing the NVIDIA vGPU software graphics driver. For
instructions, refer to Disabling the Nouveau Driver for NVIDIA Graphics Cards.

The procedure for installing the driver is the same in a VM and on bare metal.
Installation of the NVIDIA vGPU software graphics driver for Linux requires:

» Compiler toolchain

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 90

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Installing the NVIDIA vGPU Software Graphics Driver

» Kernel headers

If you are using a Linux OS for which the Wayland display server protocol is enabled by default,
disable it as explained in Disabling the Wayland Display Server Protocol for Red Hat Enterprise
Linux.

If Dynamic Kernel Module Support (DKMS] is enabled, ensure that the dkms package is
installed.

1. Copy the NVIDIA vGPU software Linux driver package, for example NVIDIA-
Linux x86 64-470.141.03-grid.run, to the guest VM or physical host where you are
installing the driver.

2. Before attempting to run the driver installer, exit the X server and terminate all OpenGL
applications.

» On Red Hat Enterprise Linux and CentOS systems, exit the X server by transitioning to
runlevel 3:
[nvidia@localhost ~]$ sudo init 3

» On Ubuntu platforms, do the following:

a). Use CTRL-ALT-F1 to switch to a console login prompt.
b). Log in and shut down the display manager:

» For Ubuntu 18 and later releases, stop the gdm service
[nvidia@localhost ~]$ sudo service gdm stop
» Forreleases earlier than Ubuntu 18, stop the 1ightdm service.
[nvidia@localhost ~]$ sudo service lightdm stop
3. From a console shell, run the driver installer as the root user.
sudo sh ./NVIDIA-Linux x86_64-470.141.03-grid.run
If DKMS is enabled, set the -dkms option. This option requires the dkms package to be
installed.
sudo sh ./NVIDIA-Linux x86_ 64-470.141.03-grid.run -dkms
In some instances the installer may fail to detect the installed kernel headers and sources.
In this situation, re-run the installer, specifying the kernel source path with the --kernel-

source-path option.

sudo sh ./NVIDIA-Linux_ x86_64-470.141.03-grid.run \
-kernel-source-path=/usr/src/kernels/3.10.0-229.11.1.el7.x86_64

4. When prompted, accept the option to update the X configuration file (xorg.conf].

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 91

Installing the NVIDIA vGPU Software Graphics Driver

Figure 19. Update xorg.conf settings

Would you like to run the nvidia-xconfig utility to automatically update
your X configuration file so that the NUIDIA X driver will be used when you
restart X? Any pre-existing X configuration file will be backed up.

[Yes| No

NUIDIA Software Installer for Unix/Linux www.nvidia.com

5. Once installation has completed, select OK to exit the installer.
6. Verify that the NVIDIA driver is operational.

a). Reboot the system and log in.

b). Run nvidia-settings.

[nvidia@localhost ~]$ nvidia-settings

The NVIDIA X Server Settings dialog box opens to show that the NVIDIA driver is
operational.

Installation in a VM: After you install the NVIDIA vGPU software graphics driver, you can
license any NVIDIA vGPU software licensed products that you are using. For instructions, refer
to Virtual GPU Client Licensing User Guide.

Installation on bare metal: After you install the NVIDIA vGPU software graphics driver,
complete the bare-metal deployment as explained in Bare-Metal Deployment.

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
NVIDIA vGPU software graphics driver.

S| Note: If you are using SUSE Linux Enterprise Server, you can skip this task because the
Nouveau driver is not present in SUSE Linux Enterprise Server.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 92

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Installing the NVIDIA vGPU Software Graphics Driver

Run the following command and if the command prints any output, the Nouveau driver is
present and must be disabled.

$ 1lsmod | grep nouveau

1. Create the file /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

blacklist nouveau
options nouveau modeset=0

2. Regenerate the kernel initial RAM file system (initramfs).
The command to run to regenerate the kernel initramfs depends on the Linux distribution
that you are using.

Linux Distribution Command

Cent0S $ sudo dracut --force
Debian $ sudo update-initramfs -u
Red Hat Enterprise Linux $ sudo dracut --force
Ubuntu $ sudo update-initramfs -u

3. Reboot the host or guest VM.

4.4. Disabling the Wayland Display Server
Protocol for Red Hat Enterprise Linux

Starting with Red Hat Enterprise Linux Desktop 8.0, the Wayland display server protocol is
used by default on supported GPU and graphics driver configurations. However, the NVIDIA
vGPU software graphics driver for Linux requires the X Window System. Before installing the
driver, you must disable the Wayland display server protocol to revert to the X Window System.
Perform this task from the host or guest VM that is running Red Hat Enterprise Linux Desktop.

This task requires administrative access.

1. In a plain text editor, edit the file /etc/gdm/custom.conf and remove the comment from
the option WwaylandEnable=false.

2. Save your changes to /etc/gdm/custom.conf.
3. Reboot the host or guest VM.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 93

Chapter 5. Licensing an NVIDIA vGPU

NVIDIA vGPU is a licensed product. When booted on a supported GPU, a vGPU initially
operates at full capability but its performance is degraded over time if the VM fails to obtain
a license. If the performance of a vGPU has been degraded, the full capability of the vGPU
Is restored when a license is acquired. For information about how the performance of an
unlicensed vGPU is degraded, see Virtual GPU Client Licensing User Guide.

After you license NVIDIA vGPU, the VM that is set up to use NVIDIA vGPU is capable of running
the full range of DirectX and OpenGL graphics applications.

If licensing is configured, the virtual machine (VM) obtains a license from the license server
when a vGPU is booted on these GPUs. The VM retains the license until it is shut down. It then
releases the license back to the license server. Licensing settings persist across reboots and
need only be modified if the license server address changes, or the VM is switched to running
GPU pass through.

How to license an NVIDIA vGPU depends on whether your licenses are served from NVIDIA
License System or the legacy NVIDIA vGPU software license server.

S| Note: For complete information about configuring and using NVIDIA vGPU software licensed
features, including vGPU, refer to Virtual GPU Client Licensing User Guide.

5.1. Configuring a Licensed Client of
NVIDIA License System

To use an NVIDIA vGPU software licensed product, each client system to which a physical or
virtual GPU is assigned must be able to obtain a license from the NVIDIA License System. A
client system can be a VM that is configured with NVIDIA vGPU, a VM that is configured for
GPU pass through, or a physical host to which a physical GPU is assigned in a bare-metal
deployment.

Before configuring a licensed client, ensure that the following prerequisites are met:
» The NVIDIA vGPU software graphics driver is installed on the client.

» The client configuration token that you want to deploy on the client has been created from
the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System User Guide.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 94

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Licensing an NVIDIA vGPU

» The ports in your firewall or proxy to allow HTTPS traffic between the service instance and
the licensed client must be open. The ports that must be open in your firewall or proxy
depend on whether the service instance is a CLS instance or a DLS instance:

» ForaCLS instance, ports 443 and 80 must be open.

» Fora DLS instance, ports 443, 80, 8081, and 8082 must be open.

The graphics driver creates a default location in which to store the client configuration token
on the client.

The process for configuring a licensed client is the same for CLS and DLS instances but
depends on the OS that is running on the client.

5.1.1. Configuring a Licensed Client on Windows
Perform this task from the client.

1. Add the FeatureType DWord (REG_DWORD) registry value to the Windows registry key
HKEY LOCAL MACHINE\SOFTWARE\NVIDIA Corporation\Global\GridLicensing.

Note: If you are upgrading an existing driver, this value is already set.

The value to set depends on the type of the GPU assigned to the licensed client that you
are configuring.

GPU Type Setting

NVIDIA vGPU Do not change the value of this registry key. NVIDIA
vGPU software automatically selects the correct type of
license based on the vGPU type.

Physical GPU The feature type of a GPU in pass-through mode or a
bare-metal deployment:

» 0: NVIDIA Virtual Applications
» 2: NVIDIA RTX Virtual Workstation

2. Optional: If you want store the client configuration token in a custom location, add the
ClientConfigTokenPath String (REG_Sz) registry value to the Windows registry key
HKEY LOCAL MACHINE\SOFTWARE\NVIDIA Corporation\Global\GridLicensing.

Set the value to the full path to the folder in which you want to store the client
configuration token for the client. You can use the syntax \\ fully-qualified-domain-
name\ share-name for the path to the folder. By default, the client searches for the client
configuration token in the $systemDrive%:\Program Files\NVIDIA Corporation\vGPU
Licensing\ClientConfigToken folder

By specifying a shared network drive mapped on the client, you can simplify the
deployment of the same client configuration token on multiple clients. Instead of copying
the client configuration token to each client individually, you can keep only one copy in the
shared network drive.

3. Ifyou are storing the client configuration token in a custom location, create the folder in
which you want to store the client configuration token.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 95

Licensing an NVIDIA vGPU

If the folder is a shared network drive, ensure that the following conditions are met:
» The folder is mapped locally on the client to the path specified in the
ClientConfigTokenPath registry value.

» The COMPUTER object has the rights to access the folder on the shared network drive.
The COMPUTER object requires these rights because the license service runs before any
user logs in.

If you are storing the client configuration token in the default location, omit this step. The
default folder in which the client configuration token is stored is created automatically
after the graphics driver is installed.

4. Copy the client configuration token to the folder in which you want to store the client
configuration token.

Ensure that this folder contains only the client configuration token that you want to deploy
on the client and no other files or folders. If the folder contains more than one client
configuration token, the client uses the newest client configuration token in the folder.

» If you want to store the client configuration token in the default location, copy the client
configuration token to the $SystemDrive%:\Program Files\NVIDIA Corporation
\vGPU Licensing\ClientConfigToken folder.

» If you want to store the client configuration token in a custom location, copy the token
to the folder that you created in the previous step.

5. Restart the NvDisplayContainer service.

The NVIDIA service on the client should now automatically obtain a license from the CLS or
DLS instance.

After a Windows licensed client has been configured, options for configuring licensing for a
network-based license server are no longer available in NVIDIA Control Panel.

5.1.2. Configuring a Licensed Client on Linux

Perform this task from the client.

1. As root, open the file /etc/nvidia/gridd.conf Iin a plain-text editor, such as vi.

S sudo vi /etc/nvidia/gridd.conf

Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied template
file /etc/nvidia/gridd.conf.template.

2. Add the FeatureType configuration parameter to the file /etc/nvidia/gridd.conf on a
new line as FeatureType="value".

value depends on the type of the GPU assigned to the licensed client that you are

configuring.
GPU Type Value
NVIDIA vGPU 1. NVIDIA vGPU software automatically selects the correct

type of license based on the vGPU type.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 96

Licensing an NVIDIA vGPU

GPU Type Value

Physical GPU The feature type of a GPU in pass-through mode or a bare-
metal deployment:

» 0: NVIDIA Virtual Applications
» 2: NVIDIA RTX Virtual Workstation
» 4: NVIDIA Virtual Compute Server

This example shows how to configure a licensed Linux client for NVIDIA Virtual Compute
Server.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon

Description: Set Feature to be enabled
Data type: integer

Possible values:

0 => for unlicensed state

1 => for NVIDIA vGPU

2 => for NVIDIA RTX Virtual Workstation
4 => for NVIDIA Virtual Compute Server
FeatureType=4

3. Optional: If you want store the client configuration token in a custom location, add the
ClientConfigTokenPath configuration parameter to the file /etc/nvidia/gridd.conf
on a new line as ClientConfigTokenPath="path"

path
The full path to the directory in which you want to store the client configuration token
for the client. By default, the client searches for the client configuration token in the /
etc/nvidia/ClientConfigToken/ directory.

By specifying a shared network directory that is mounted locally on the client, you can
simplify the deployment of the same client configuration token on multiple clients. Instead
of copying the client configuration token to each client individually, you can keep only one
copy in the shared network directory.

This example shows how to configure a licensed Linux client to search for the client
configuration token in the /mnt/nvidia/ClientConfigToken/ directory. This directory is
a mount point on the client for a shared network directory.

/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon

ClientConfigTokenPath=/mnt/nvidia/ClientConfigToken/

4. Save your changes to the /etc/nvidia/gridd.conf file and close the file.
5. If you are storing the client configuration token in a custom location, create the directory in
which you want to store the client configuration token.

If the directory is a shared network directory, ensure that it is mounted locally on the client
at the path specified in the ClientConfigTokenPath configuration parameter.

If you are storing the client configuration token in the default location, omit this step. The
default directory in which the client configuration token is stored is created automatically
after the graphics driver is installed.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 97

Licensing an NVIDIA vGPU

6. Copy the client configuration token to the directory in which you want to store the client
configuration token.

Ensure that this directory contains only the client configuration token that you want to
deploy on the client and no other files or directories. If the directory contains more than
one client configuration token, the client uses the newest client configuration token in the
directory.

» If you want to store the client configuration token in the default location, copy the client
configuration token to the /etc/nvidia/ClientConfigToken directory.

» If you want to store the client configuration token in a custom location, copy the token
to the directory that you created in the previous step.

7. Ensure that the file access modes of the client configuration token allow the owner to
read, write, and execute the token, and the group and others only to read the token.

a). Determine the current file access modes of the client configuration token.

1s -1 client-configuration-token-directory

b). If necessary, change the mode of the client configuration token to 744.

chmod 744 client-configuration-token-directory/client configuration_ token_*.tok

client-configuration-token-directory
The directory to which you copied the client configuration token in the previous step.

8. Restart the nvidia-gridd service.

The NVIDIA service on the client should now automatically obtain a license from the CLS or
DLS instance.

After a Linux licensed client has been configured, options for configuring licensing for a
network-based license server are no longer available in NVIDIA X Server Settings.

5.1.3. Verifying the NVIDIA vGPU Software License
Status of a Licensed Client

After configuring a client with an NVIDIA vGPU software license, verify the license status by
displaying the licensed product name and status.

To verify the license status of a licensed client, run nvidia-smi with the —q or --query option.
If the product is licensed, the expiration date is shown in the license status.

nvidia-smi -gq

NVSMI LOG
Timestamp : Wed Mar 31 01:49:28 2020
Driver Version : 440.88
CUDA Version : 10.0
Attached GPUs g 1
GPU 00000000:00:08.0
Product Name : Tesla T4
Product Brand : Grid
Display Mode : Enabled
Display Active : Disabled
Persistence Mode : N/A
Accounting Mode : Disabled
Accounting Mode Buffer Size : 4000

Driver Model

Virtual GPU Software

DU-06920-001 _v13.0 through 13.4 | 98

Licensing an NVIDIA vGPU

Current : WDDM
Pending : WDDM
Serial Number : 0334018000638
GPU UUID : GPU-ba2310b6-95d1-802b-f96f-5865410fe517
Minor Number : N/A
VBIOS Version : 90.04.21.00.01
MultiGPU Board : No
Board ID : 0x8
GPU Part Number : 699-2G183-0200-100
Inforom Version
Image Version : G183.0200.00.02
OEM Object : 1.1
ECC Object : 5.0
Power Management Object : N/A
GPU Operation Mode
Current : N/A
Pending : N/A
GPU Virtualization Mode
Virtualization mode : Pass-Through
vGPU Software Licensed Product
Product Name : NVIDIA Virtual Compute Server
License Status : Licensed (Expiry: 2021-11-13 18:29:59 GMT)

5.2. Licensing NVIDIA vGPU from the

Legacy License Server
How to license NVIDIA vGPU depends on the guest OS that is running in the VM.

5.2.1. Licensing an NVIDIA vGPU on Windows

Perform this task from the guest VM to which the vGPU is assigned.

The NVIDIA Control Panel tool that you use to perform this task detects that a vGPU is
assigned to the VM and, therefore, provides no options for selecting the license type. After
you license the vGPU, NVIDIA vGPU software automatically selects the correct type of license
based on the vGPU type.

1. Open NVIDIA Control Panel:
» Right-click on the Windows desktop and select NVIDIA Control Panel from the menu.
» Open Windows Control Panel and double-click the NVIDIA Control Panel icon.

2. In NVIDIA Control Panel, select the Manage License task in the Licensing section of the
navigation pane.

Note: If the Licensing section and Manage License task are not displayed in NVIDIA Control
Panel, the system has been configured to hide licensing controls in NVIDIA Control Panel.
For information about registry settings, refer to Virtual GPU Client Licensing User Guide.

The Manage License task pane shows that NVIDIA vGPU is currently unlicensed.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 99

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Licensing an NVIDIA vGPU

Figure 20. Managing vGPU licensing in NVIDIA Control Panel
(=] NVIDIA Control Panel EEEI

{| File Edit Desktop Help

Q= - Q|G

Select a Task...

Manage License P

[=- 3D Settings

i L-Adjustimage settings with preview
--Manage 3D settings *You can enable additional features by applying a license

i l.SetPhysx Configuration

El Display

--Change resolution

I -.5et up multiple displays

License Edition:

L’.‘_\Your system does not have a valid GRID vGPU license.
To access GRID wGPU features, enter license server details and apply.

- Video
Adjust video color settings
--Adjust video image settings

Primary License Server:

Port Number:

m

Secondary License Server:

Port Number:

Description:

Typical usage scenarios:

System Information i

3. Inthe Primary License Server field, enter the address of your primary NVIDIA vGPU
software License Server.

The address can be a fully-qualified domain name such as gridlicensel.example.com,
or an IP address such as 10.31.20.45.

If you have only one license server configured, enter its address in this field.

4. Leave the Port Number field under the Primary License Server field unset.
The port defaults to 7070, which is the default port number used by NVIDIA vGPU software
License Server.

5. In the Secondary License Server field, enter the address of your secondary NVIDIA vGPU
software License Server.

If you have only one license server configured, leave this field unset.

The address can be a fully-qualified domain name such as gridlicense2.example.com,
or an IP address such as 10.31.20.46.

6. Leave the Port Number field under the Secondary License Server field unset.
The port defaults to 7070, which is the default port number used by NVIDIA vGPU software
License Server.

7. Click Apply to assign the settings.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 100

Licensing an NVIDIA vGPU

The system requests the appropriate license for the current vGPU from the configured
license server.

The vGPU within the VM should now operate at full capability without any performance
degradation over time for as long as the vGPU is licensed.

If the system fails to obtain a license, see Virtual GPU Client Licensing User Guide for guidance
on troubleshooting.

5.2.2. Licensing an NVIDIA vGPU on Linux

Perform this task from the guest VM to which the vGPU is assigned.

The NVIDIA X Server Settings tool that you use to perform this task detects that a vGPU is
assigned to the VM and, therefore, provides no options for selecting the license type. After
you license the vGPU, NVIDIA vGPU software automatically selects the correct type of license
based on the vGPU type.

Ensure that the Manage License option is enabled as explained in Virtual GPU Client Licensing
User Guide.

Note: Do not enable the Manage License option with Red Hat Enterprise Linux 6.8 and 6.9 or
Cent0S 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-
gridd service from exiting, the GUI for licensing must be disabled with these OS versions.

1. Start NVIDIA X Server Settings by using the method for launching applications provided by
your Linux distribution.

For example, on Ubuntu Desktop, open the Dash, search for NVIDIA X Server Settings,
and click the NVIDIA X Server Settings icon.

2. In the NVIDIA X Server Settings window that opens, click Manage GRID License.

The License Edition section of the NVIDIA X Server Settings window shows that NVIDIA
vGPU is currently unlicensed.

3. Inthe Primary Server field, enter the address of your primary NVIDIA vGPU software
License Server.

The address can be a fully-qualified domain name such as gridlicensel.example.com,
or an IP address such as 10.31.20.45.

If you have only one license server configured, enter its address in this field.

4. Leave the Port Number field under the Primary Server field unset.
The port defaults to 7070, which is the default port number used by NVIDIA vGPU software
License Server.

5. In the Secondary Server field, enter the address of your secondary NVIDIA vGPU software
License Server.

If you have only one license server configured, leave this field unset.

The address can be a fully-qualified domain name such as gridlicense2.example.com,
or an IP address such as 10.31.20.46.

6. Leave the Port Number field under the Secondary Server field unset.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 101

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Licensing an NVIDIA vGPU

The port defaults to 7070, which is the default port number used by NVIDIA vGPU software
License Server.

7. Click Apply to assign the settings.

The system requests the appropriate license for the current vGPU from the configured
license server.

The vGPU within the VM should now operate at full capability without any performance
degradation over time for as long as the vGPU is licensed.

If the system fails to obtain a license, refer to Virtual GPU Client Licensing User Guide for
guidance on troubleshooting.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 102

http://docs.nvidia.com/grid/13.0/pdf/grid-licensing-user-guide.pdf

Chapter 6. Modifying a VM’'s NVIDIA
vGPU Configuration

You can modify a VM's NVIDIA vGPU configuration by removing the NVIDIA vGPU configuration
from a VM or by modifying GPU allocation policy.

6.1. Removing a VM's NVIDIA vGPU
Configuration

Remove a VM's NVIDIA vGPU configuration when you no longer require the VM to use a virtual
GPU.

6.1.1. Removing a Citrix Virtual Apps and Desktops
VM’s vGPU configuration

You can remove a virtual GPU assignment from a VM, such that it no longer uses a virtual
GPU, by using either XenCenter or the xe command.

Note: The VM must be in the powered-off state in order for its vGPU configuration to be
modified or removed.

6.1.1.1. Removing a VM’s vGPU configuration by using
XenCenter

1. Set the GPU type to None in the VM's GPU Properties, as shown in Figure 21.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 103

Modifying a VM's NVIDIA vGPU Configuration

Figure 21. Using XenCenter to remove a vGPU configuration from a VM
@ XenCenter S E =]
File View Pool Server VM Storage Templates Tools Help
e Back - () Forward - E; Add New Server New Pool 5 New Storage B New vM @ Start & 3 Reboot U Suspend
Search... account
§ €3 RS1-Server-RTM (1) Properties
(=) {2r Xen
E® G |
eneral -
E RS1-Server-RTM (1) el
[= Custom Fields
g <Nonex You can improve graphics performance by assigning a virtual graphics processing unit to this
q # CPU se all
g 2vCPU(s)
g @ Boot Options GPU type: None =
B Boot order: DVD-Drive, Hard...
& [} Start Options "
E HA is not available on stand... NVIDIA Corporation GM204GL [Tesla M60] GPUs
o Alerts Pass-through whole GPU
None defined GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
[Home Server GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display)
None defined GRID M60-4Q) virtual GPU (2 per GPU, 4096x2160, 4 displays)
== GPU GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
None . GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
#, Advanced Options GRID M60-2A virtual GPU (4 per GPU, 12801024, 1 display)
Optimize for general use GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays)
GRID M60-1B virtual GPU (8 per GPU, 2560x1600, 4 displays)
GRID M60-1A virtual GPU (8 per GPU, 1280x1024, 1 display)
GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
GRID M60-0B virtual GPU (16 per GPU, 2560x1600, 2 displays)
]
il Objed
;!. Orgarn
O, saved
Qsae
Notifi
2. Click OK.

6.1.1.2. Removing a VM’'s vGPU configuration by using xe

1. Use vgpu-1list to discover the vGPU object UUID associated with a given VM:

[root@xenserver ~]# xe vgpu-list vm-uuid=e7lafda4-53f4-3alb-6c92-a364a7£619c2
uuid (RO) : clc7c43d-4c99-af76-5051-119f1c2b4188
vm-uuid (RO): e7lafdad-53f4-3alb-6c92-a364a7£619c2
gpu-group-uuid (RO): d53526a9-3656-5c88-890b-5b24144c3d96

2. Use vgpu-destroy to delete the virtual GPU object associated with the VM:

[root@xenserver ~]# xe vgpu-destroy uuid=clc7c43d-4c99-af76-5051-119£f1c2b4188
[root@xenserver ~]#

6.1.2. Removing a vSphere VM's vGPU
Configuration

To remove a vSphere vGPU configuration from a VM:

1. Select Edit settings after right-clicking on the VM in the vCenter Web Ul.
2. Select the Virtual Hardware tab.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 104

Modifying a VM's NVIDIA vGPU Configuration

3. Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the (X] icon to
mark the device for removal.

4. Click OK to remove the device and update the VM settings.

6.2. Modifying GPU Allocation Policy

Citrix Hypervisor and VMware vSphere both support the breadth first and depth-first GPU

allocation policies for vGPU-enabled VMs.

breadth-first
The breadth-first allocation policy attempts to minimize the number of vGPUs running on
each physical GPU. Newly created vGPUs are placed on the physical GPU that can support
the new vGPU and that has the fewest vGPUs already resident on it. This policy generally
leads to higher performance because it attempts to minimize sharing of physical GPUs, but
it may artificially limit the total number of vGPUs that can run.

depth-first
The depth-first allocation policy attempts to maximize the number of vGPUs running on
each physical GPU. Newly created vGPUs are placed on the physical GPU that can support
the new vGPU and that has the most vGPUs already resident on it. This policy generally
leads to higher density of vGPUs, particularly when different types of vGPUs are being run,
but may result in lower performance because it attempts to maximize sharing of physical
GPUs.

Each hypervisor uses a different GPU allocation policy by default.
» Citrix Hypervisor uses the depth-first allocation policy.

» VMware vSphere ESXi uses the breadth-first allocation policy.

If the default GPU allocation policy does not meet your requirements for performance or
density of vGPUs, you can change it.

6.2.1. Modifying GPU Allocation Policy on Citrix
Hypervisor

You can modify GPU allocation policy on Citrix Hypervisor by using XenCenter or the xe
command.

6.2.1.1. Modifying GPU Allocation Policy by Using xe

The allocation policy of a GPU group is stored in the allocation-algorithm parameter of the
gpu-group object.

To change the allocation policy of a GPU group, use gpu-group-param-set:

[root@xenserver ~]# xe gpu-group-param-get uuid=be825ba2-01d7-8d51-9780-f82cfaa64924 param-
name=allocation-algorithmdepth-first

[root@xenserver ~]# xe gpu-group-param-set uuid=be825ba2-01d7-8d51-9780-£82cfaa64924
allocation-algorithm=breadth-first

[root@xenserver ~]#

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 105

Modifying a VM's NVIDIA vGPU Configuration

6.2.1.2. Modifying GPU Allocation Policy GPU by Using
XenCenter

You can modify GPU allocation policy from the GPU tab in XenCenter.

Figure 22. Modifying GPU placement policy in XenCenter

°Xen0entar ‘.‘:' = B |

File View Pool Server VM Storage Templates Tools Window Help

e Back - O Forward - @ Add New Server MNew Pool @ Mew Storage H New VM @ Shut Down % Reboot u Suspend V Mo System Alerts

Views: [Servel View '] E xenserver-vgx-test (VM IPs 10.31.223.0-49, dom0 .96, OOB .97) Logged in as: Local root account |

Search... -O Search | General I Memory | Storage | Networking | NICs | GPU Console | Performance | Users | Logs
=] 6 KenCenter GPU
=Y st (VM IPs 10.31.2
@ dx-base-image-win7-64 XDT t
@ vgx-base-image-win7-32 Placement policy: Maximurm density: put as many VMs as possible on the same GPU
@ vgx-base-image-win/-64
F B

5 DVD drives 6 'xenserver-vgx-test (VM IPs 10.31.223.0-49, dom0 96, OOB .97)' Properties [

@ Local storage
g Removable st

= VM storage General i GPU
o EI\} xenserver-vgx-tes xenserver-vgx-test (VM IPs ...

@ cadalyst-win = Custom Fields Set a placement policy for assigning YMs to GPUs to achieve either maximum density or maximum performance.
@ Copy of cadal =Mene>

@ dx-base-imai s Alerts @ Maximum density: put as many YMs as possible on the same GPU
@ che base-img Hene defined @) Maximum performance: put VMs on as many GPUs as possible
B rvwmi-test-w, Email Options

[Oleg MvwMI|, None defined

@ vgx-base-! i g Multipathing

@ va-bE;E-! i Not active

@ vgx-base-imal)|

@ vi-base-imal) @ Power On

@ wini-64-test-| <None>

[DVD drives [, Log Destination

Local storage Local

[NFS IS0 libraf, aw GPU

% Rernovable st
g VM Storage
E acurrid-testl

Maximum density

__

6.2.2. Modifying GPU Allocation Policy on VMware
vSphere

How to switch to a depth-first allocation scheme depends on the version of VMware vSphere
that you are using.

» Supported versions earlier than 6.5: Add the following parameter to /etc/vmware/
config:
vGPU.consolidation = true

» Version 6.5: Use the vSphere Web Client.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 106

Modifying a VM's NVIDIA vGPU Configuration

Before using the vSphere Web Client to change the allocation scheme, ensure that the ESXi
host is running and that all VMs on the host are powered off.

1. Log in to vCenter Server by using the vSphere Web Client.

2. In the navigation tree, select your ESXi host and click the Configure tab.
3. From the menu, choose Graphics and then click the Host Graphics tab.
4. Onthe Host Graphics tab, click Edit.

Figure 23. Breadth-first allocation scheme setting for vGPU-enabled
VMs
vmware® vSphere Web Client #= U | Administrator@PSG-HOME.LOCAL ~ | Help
Navigator X [1921681130 | B 7 [[[| {8Actions - =
4 Back Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks

]] 8

~[51192.168.11.6 “ Host Graphics | Graphics Devices

Advanced -
+ [z home Host Graphics Settings _.gﬁ-
» B 192.168.11.20 w Virtual Machines
I B 192.168.11.30 VM Startup/Shutdown Default graphics type: Shared
Agent VM Settings Shared passthrough GPU Spread VMs across GPUs (best performance)

assignment policy:
Swap file location

Default VM Compatibility

4

System
Licensing

Time Configuration

Authentication Services

Certificate

Power Management
Advanced System Settings
System Resource Reservation
Security Profile
System Swap
Host Profile
+ Hardware

Processors
Memory

T
Power Management
PCI Devices

+w Virtual Flash =
< e »

< i »

5. In the Edit Host Graphics Settings dialog box that opens, select these options and click OK.
a). If not already selected, select Shared Direct.
b). Select Group VMs on GPU until full.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 107

Modifying a VM's NVIDIA vGPU Configuration

Figure 24. Host graphics settings for vGPU

[Zl 192.168.11.30 - Edit Host Graphics Settings 2

,ﬂ Settings will take effect after restarting the host or "xorg" service.

() Shared
VMware shared virtual graphics

(¢) Shared Direct
Vendor shared passthrough graphics

Shared passthrough GPU assignment policy:
(_) Spread VMs across GPUs (best performance)

(¢) Group VMs on GPU until full (GPU consolidation)

OK] [Cancel

\ .::::J

After you click OK, the default graphics type changes to Shared Direct and the allocation
scheme for vGPU-enabled VMs is breadth-first.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 108

Modifying a VM's NVIDIA vGPU Configuration

Figure 25. Depth-first allocation scheme setting for vGPU-enabled VMs
vmware® vSphere Web Client f= O | Administrator@PSG-HOME.LOCAL ~ | Help ~
Navigator X [1921681130 | B % [[y [| {SActions =
4 Back Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks

@ 8

[192.168.11.6 “ Host Graphics | Graphics Devices

+ Storage -

v |}y home Host Graphics Settings
Storage Adapters

» B192.168.11.20

§ 192.168.11.30 Storage Devices Default graphics type: Shared Direct

Datastores Shared passthrough GPU Group VMs on GPU until full (GPU consolidation)
assignment policy:

Host Cache Configuration
Protocol Endpoints
w Networking
Virtual switches
VMkernel adapters
Physical adapters
TCP/IP configuration
Advanced
+ Virtual Machines
VM Startup/Shutdown
Agent VM Settings
Swap file location
Default VM Compatibility
w System
Licensing
Time Configuration
Authentication Services
Certificate
Power Management

Advanced System Settings =
4 i »

6. Restart the ESXi host or the Xorg service on the host.
See also the following topics in the VMware vSphere documentation:

» LogintovCenter Server by Using the vSphere Web Client

» Configuring Host Graphics

6.3. Migrating a VM Configured with vGPU

On some hypervisors, NVIDIA vGPU software supports migration of VMs that are configured
with vGPU.

Before migrating a VM configured with vGPU, ensure that the following prerequisites are met:

» The VM is configured with vGPU.
» The VM is running.

» The VM obtained a suitable vGPU license when it was booted.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 109

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Modifying a VM's NVIDIA vGPU Configuration

» The destination host has a physical GPU of the same type as the GPU where the vGPU
currently resides.

» ECC memory configuration (enabled or disabled) on both the source and destination hosts
must be identical.

» The GPU topologies (including NVLink widths] on both the source and destination hosts
must be identical.

S Note: vVGPU migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit
features is enabled:
> Unified memory
» Debuggers

» Profilers

How to migrate a VM configured with vGPU depends on the hypervisor that you are using.
After migration, the vGPU type of the vGPU remains unchanged.

The time required for migration depends on the amount of frame buffer that the vGPU has.
Migration for a vGPU with a large amount of frame buffer is slower than for a vGPU with a
small amount of frame buffer.

6.3.1. Migrating a VM Configured with vGPU on
Citrix Hypervisor

NVIDIA vGPU software supports XenMotion for VMs that are configured with vGPU. XenMotion
enables you to move a running virtual machine from one physical host machine to another
host with very little disruption or downtime. For a VM that is configured with vGPU, the vGPU
is migrated with the VM to an NVIDIA GPU on the other host. The NVIDIA GPUs on both host
machines must be of the same type.

For details about which Citrix Hypervisor versions, NVIDIA GPUs, and guest OS releases
support XenMotion with vGPU, see Virtual GPU Software for Citrix Hypervisor Release Notes.

For best performance, the physical hosts should be configured to use the following:
» Shared storage, such as NFS, iSCSI, or Fiberchannel

If shared storage is not used, migration can take a very long time because vDISK must also
be migrated.

» 10 GB networking.

1. In Citrix XenCenter, context-click the VM and from the menu that opens, choose Migrate.

2. From the list of available hosts, select the destination host to which you want to migrate
the VM.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 110

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Modifying a VM's NVIDIA vGPU Configuration

The destination host must have a physical GPU of the same type as the GPU where the
vGPU currently resides. Furthermore, the physical GPU must be capable of hosting the
vGPU. If these requirements are not met, no available hosts are listed.

6.3.2. Migrating a VM Configured with vGPU on
VMware vSphere

NVIDIA vGPU software supports VMware vMotion for VMs that are configured with vGPU.
VMware vMotion enables you to move a running virtual machine from one physical host
machine to another host with very little disruption or downtime. For a VM that is configured
with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other host. The NVIDIA
GPUs on both host machines must be of the same type.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Perform this task in the VMware vSphere web client by using the Migration wizard.
Before migrating a VM configured with vGPU on VMware vSphere, ensure that the following
prerequisites are met:

» Your hosts are correctly configured for VMware vMotion. See Host Configuration for
vMotion in the VMware documentation.

» The prerequisites listed for all supported hypervisors in Migrating a VM Configured with
vGPU are met.

> NVIDIA vGPU migration is configured. See Configuring VMware vMotion with vGPU for
VMware vSphere.

1. Context-click the VM and from the menu that opens, choose Migrate.
2. Forthe type of migration, select Change compute resource only and click Next.

If you select Change both compute resource and storage, the time required for the
migration increases.

3. Select the destination host and click Next.

The destination host must have a physical GPU of the same type as the GPU where the
vGPU currently resides. Furthermore, the physical GPU must be capable of hosting the
vGPU. If these requirements are not met, no available hosts are listed.

4. Select the destination network and click Next.
5. Select the migration priority level and click Next.
6. Review your selections and click Finish.

For more information, see the following topics in the VMware documentation:

» Migrate a Virtual Machine to a New Compute Resource
» Using vMotion to Migrate vGPU Virtual Machines

If NVIDIA vGPU migration is not configured, any attempt to migrate a VM with an NVIDIA vGPU
fails and a window containing the following error message is displayed:

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 111

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6068ECD7-E3FA-4155-A326-D996BDBDF00C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-8FE6A0DA-49E9-472B-815B-D630CF2014AD.html

Modifying a VM's NVIDIA vGPU Configuration

Compatibility Issue/Host

Migration was temporarily disabled due to another
migration activity.

vGPU hot migration is not enabled.

The window appears as follows:

Compatibility Issue / Host

w
W
O
D
Q
Q
=
®
~r
O
W
O
= ¢
D

o f'v'1|g ration was tem P .:;.r'ar”:vr d
migration activity.
vGPU hot migration is not enabled

If you see this error, configure NVIDIA vGPU migration as explained in Configuring VMware
vMotion with vGPU for VMware vSphere.

If your version of VMware vSpehere ESXi does not support vMotion for VMs configured with
NVIDIA vGPU, any attempt to migrate a VM with an NVIDIA vGPU fails and a window containing

the following error message is displayed:

Compatibility Issues

A required migration feature is not supported on the "Source" host 'host-name'.
A warning or error occurred when migrating the virtual machine.

Virtual machine relocation, or power on after relocation or cloning can fail if

vGPU resources are not available on the destination host.

The window appears as follows:

Compatibility I1ssues

& nVidia-060
@ poc 2. hp.providence.org

& A required migration feature is not supported on the "Source” host
'‘poc 1 hp.providence.org'.

& Awarning or error occurred when migrating the virtual machine.
Wirtual machine relocation, or power on after relocation or cloning can fail if
wGPU resources are not available on the destination host.

Close

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 112

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Modifying a VM's NVIDIA vGPU Configuration

6.3.3. Suspending and Resuming a VM Configured
with vGPU on VMware vSphere

NVIDIA vGPU software supports suspend and resume for VMs that are configured with vGPU.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Perform this task in the VMware vSphere web client.

> To suspend a VM, context-click the VM that you want to suspend, and from the context
menu that pops up, choose Power > Suspend .

> Toresume a VM, context-click the VM that you want to resume, and from the context menu
that pops up, choose Power > Power On .

6.4. Modifying a MIG-Backed vGPU's
Configuration

If compute instances weren't created within the GPU instances when the GPU was configured
for MIG-backed vGPUs, you can add the compute instances for an individual vVGPU from within
the guest VM. If you want to replace the compute instances that were created when the GPU
was configured for MIG-backed vGPUs, you can delete them before adding the compute
instances from within the guest VM.

Ensure that the following prerequisites are met:

> You have root user privileges in the guest VM.

» The GPU instance is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

Perform this task in a guest VM command shell.

1. Open a command shell as the root user in the guest VM.
You can use secure shell ([SSH] for this purpose.
2. List the available GPU instance.

S nvidia-smi mig -1lgi

e +
| GPU instances: |
| GPU Name Profile 1Instance Placement |
| D ID Start:Size |
| |
| 0 MIG 2g.10gb 0 0 0:8 |
R et e +

3. Optional: If compute instances were created when the GPU was configured for MIG-
backed vGPUs that you no longer require, delete them.

S nvidia-smi mig -dci -ci compute-instance-id -gi gpu-instance-id

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 113

http://docs.nvidia.com/grid/13.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Modifying a VM's NVIDIA vGPU Configuration

compute-instance-id
The ID of the compute instance that you want to delete.
gpu-instance-id
The ID of the GPU instance from which you want to delete the compute instance.

S| Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU instance and retry the command.

This example deletes compute instance 0 from GPU instance 0 on GPU 0.

$ nvidia-smi mig -dci -ci 0 -gi O
Successfully destroyed compute instance ID O from GPU O GPU instance ID O

4. List the compute instance profiles that are available for your GPU instance.
$ nvidia-smi mig -lcip
This example shows that one MIG 2g.10gb compute instance or two MIG 1c.2g.10gb
compute instances can be created within the GPU instance.

$ nvidia-smi mig -lcip

+

| Compute instance profiles: |
| GPU GPU Name Profile 1Instances Exclusive Shared |
| Instance D Free/Total SM DEC ENC OFA |
| ID CE JPEG |
| |
| 0 0 MIG 1lc.2g.10gb 0 2/2 14 1 0 0 |
| 2 0 |
BTttt ettt e +
| 0 0 MIG 2g.10gb e 1/1 28 1 0 0 |
| 2 0 |
e +

5. Create the compute instances that you need within the available GPU instance.

Create each compute instance individually by running the following command.
$ nvidia-smi mig -cci compute-instance-profile-id -gi gpu-instance-id
compute-instance-profile-id
The compute instance profile ID that specifies the compute instance.
gpu-instance-id
The GPU instance ID that specifies the GPU instance within which you want to create
the compute instance.

S Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU and retry the command.

This example creates a MIG 2g.10gb compute instance on GPU instance 0.

$ nvidia-smi mig -cci 1 -gi O

Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
profile MIG 2g.10gb (ID 1)

This example creates two MIG 1c.2g.10gb compute instances on GPU instance 0 by
running the same command twice.

$ nvidia-smi mig -cci 0 -gi 0

Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
profile MIG 1lc.2g.10gb (ID 0)

$ nvidia-smi mig -cci 0 -gi 0

Successfully created compute instance ID 1 on GPU 0 GPU instance ID 0 using
profile MIG 1lc.2g.10gb (ID 0)

6. Verify that the compute instances were created within the GPU instance.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 114

Modifying a VM's NVIDIA vGPU Configuration

Use the nvidia-smi command for this purpose.

This example confirms that a MIG 2g.10gb compute instance was created on GPU
instance 0.
nvidia-smi

Mon Aug 15 19:01:24 2022

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 CUDA Version: 11.4 |
[mm e o o +
GPU Name Persistence-M| Bus-Id Disp.A Volatile Uncorr. ECC

Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
+ +		

0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A PO N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
- e e T T o +
et +
| MIG devices |
e ettt o - f——————— o +
| GPU GI CI MIG | Memory-Usage | Vol| Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG]|
| | | ECC| |
| + + + |
| 0 0 0 0 | 1058MiB / 10235MiB | 28 ol 2 0 1 0 0 |
| | OMiB / 4096MiB | | |
- Bt ettt e o +
e et et e e
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID D Usage |
| |
| No running processes found |
e +

This example confirms that two MIG 1c.2g.10gb compute instances were created on GPU
instance 0.
$ nvidia-smi

Mon Aug 15 19:01:24 2022

| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 CUDA Version: 11.4 |
[————mmm e e T Rt ittt +
GPU Name Persistence-M| Bus-Id Disp.A Volatile Uncorr. ECC

Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
+ +		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A PO N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
- - -—— = +
o +
| MIG devices |
- -—— = - - +
| GPU GI CI MIG | Memory-Usage | Vol | Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG]|
| | | ECC| |
| + + + |
| 0 0 0 0 | 1058MiB / 10235MiB | 14 0| 2 0 1 0 0 |
| | OMiB / 4096MiB | | |
o + - o +
| 0 0 1 1 | | 14 ol 2 0 1 0 0 |
|

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 115

Modifying a VM's NVIDIA vGPU Configuration

fommmm - S fmmm - fmm e - +
e e et e e e e e +
Processes: |
GPU GI CI PID Type Process name GPU Memory |

|
|
| ID ID Usage |
|
|

6.5. Enabling Unified Memory for a vGPU

Unified memory is disabled by default. If used, you must enable unified memory individually for
each vGPU that requires it by setting a vGPU plugin parameter. How to enable unified memory
for a vGPU depends on the hypervisor that you are using.

6.9.1. Enabling Unified Memory for a vGPU on Citrix
Hypervisor

On Citrix Hypervisor, enable unified memory by setting the enable uvm vGPU plugin
parameter.
Perform this task for each vGPU that requires unified memory by using the xe command.

Set the enable_uvm vGPU plugin parameter for the vGPU to 1 as explained in Setting vGPU
Plugin Parameters on Citrix Hypervisor.

This example enables unified memory for the vGPU that has the UUID d15083£8-5c59-7474-
dOcb-fbc3£7284f1b.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284£f1b
extra args='enable uvm=1'

6.9.2. Enabling Unified Memory for a vGPU on Red
Hat Enterprise Linux KVM

On Red Hat Enterprise Linux KVM, enable unified memory by setting the enable_uvm vGPU
plugin parameter.

Ensure that the mdev device file that represents the vVGPU has been created as explained in
Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.

Perform this task for each vGPU that requires unified memory.

Set the enable_uvm vGPU plugin parameter for the mdev device file that represents the vGPU
to 1 as explained in Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor.

6.5.3. Enabling Unified Memory for a vGPU on
VMware vSphere

On VMware vSphere, enable unified memory by setting the pciPassthruvgpu-
id.cfg.enable_uvm configuration parameter in advanced VM attributes.
Ensure that the VM to which the vGPU is assigned is powered off.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 116

Modifying a VM's NVIDIA vGPU Configuration

Perform this task in the vSphere Client for each vGPU that requires unified memory.

In advanced VM attributes, set the peciPassthruvgpu-id.cfg.enable_uvm vGPU plugin
parameter for the vGPU to 1 as explained in Setting vGPU Plugin Parameters on VMware
vSphere.
vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
enabling unified memory for both vVGPUs, set pciPassthru0.cfg.enable uvm and

pciPassthrul.cfg.enable uvmto 1.

6.6. Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA vGPU

By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If used, you
must enable NVIDIA CUDA Toolkit development tools individually for each VM that requires
them by setting vGPU plugin parameters. One parameter must be set for enabling NVIDIA
CUDA Toolkit debuggers and a different parameter must be set for enabling NVIDIA CUDA
Toolkit profilers.

6.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for
NVIDIA vGPU

By default, NVIDIA CUDA Toolkit debuggers are disabled. If used, you must enable them
for each vGPU VM that requires them by setting a vGPU plugin parameter. How to set
the parameter to enable NVIDIA CUDA Toolkit debuggers for a vGPU VM depends on the
hypervisor that you are using.

You can enable NVIDIA CUDA Toolkit debuggers for any number of VMs configured with vGPUs
on the same GPU. When NVIDIA CUDA Toolkit debuggers are enabled for a VM, the VM cannot
be migrated.

Perform this task for each VM for which you want to enable NVIDIA CUDA Toolkit debuggers.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Citrix Hypervisor

Set the enable_debugging VGPU plugin parameter for the vGPU that is assigned to the VM to
1 as explained in Setting vGPU Plugin Parameters on Citrix Hypervisor.

This example enables NVIDIA CUDA Toolkit debuggers for the vGPU that has the UUID
dl15083£8-5c59-7474-d0cb-fbc3£7284f1lb.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284f1b
extra args='enable debugging=1'

The setting of this parameter is preserved after a guest VM is restarted and after the
hypervisor host is restarted.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 117

Modifying a VM's NVIDIA vGPU Configuration

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM
Set the enable_debugging VGPU plugin parameter for the mdev device file that represents

the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin Parameters on a
Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit debuggers is powered
off.

In advanced VM attributes, set the peciPassthruvgpu-id.cfg.enable_debugging vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting vGPU
Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
enabling debuggers for both vGPUs, set pciPassthru0.cfg.enable_debugging and
pciPassthrul.cfg.enable_debugging to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

6.6.2. Enabling NVIDIA CUDA Toolkit Profilers for
NVIDIA vGPU

By default, only GPU workload trace is enabled. If you want to use all NVIDIA CUDA Toolkit
profiler features that NVIDIA vGPU supports, you must enable them for each vGPU VM that
requires them.

S| Note: Enabling profiling for a VM gives the VM access to the GPU’s global performance
counters, which may include activity from other VMs executing on the same GPU. Enabling
profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other VMs
executing on the same GPU.

6.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features

You can enable the following NVIDIA CUDA Toolkit profiler features for a vGPU VM:

» NVIDIA Nsight” Compute
» NVIDIA Nsight Systems

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 118

Modifying a VM's NVIDIA vGPU Configuration

» CUDA Profiling Tools Interface (CUPTI)

6.6.2.2. Clock Management for a vGPU VM for Which
NVIDIA CUDA Toolkit Profilers Are Enabled

Clocks are not locked for periodic sampling use cases such as NVIDIA Nsight Systems
profiling.

Clocks are locked for multipass profiling such as:
» NVIDIA Nsight Compute kernel profiling
» CUPTI range profiling

Clocks are locked automatically when profiling starts and are unlocked automatically when
profiling ends.

6.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit
Profilers with NVIDIA vGPU

The following limitations apply when NVIDIA CUDA Toolkit profilers are enabled for NVIDIA
vGPU:

» NVIDIA CUDA Toolkit profilers can be used on only one VM at a time.
» Multiple CUDA contexts cannot be profiled simultaneously.

» Profiling data is collected separately for each context.

» A VM for which NVIDIA CUDA Toolkit profilers are enabled cannot be migrated.

Because NVIDIA CUDA Toolkit profilers can be used on only one VM at a time, you should
enable them for only one VM assigned a vGPU on a GPU. However, NVIDIA vGPU software
cannot enforce this requirement. If NVIDIA CUDA Toolkit profilers are enabled on more than

one VM assigned a vGPU on a GPU, profiling data is collected only for the first VM to start the
profiler.

6.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU
VM

You enable NVIDIA CUDA Toolkit profilers for a vGPU VM by setting a vGPU plugin parameter.
How to set the parameter to enable NVIDIA CUDA Toolkit profilers for a vGPU VM depends on
the hypervisor that you are using.

Perform this task for the VM for which you want to enable NVIDIA CUDA Toolkit profilers.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Citrix Hypervisor

Set the enable_profiling vGPU plugin parameter for the vVGPU that is assigned to the VM to
1 as explained in Setting vGPU Plugin Parameters on Citrix Hypervisor.

This example enables NVIDIA CUDA Toolkit profilers for the vGPU that has the UUID
d15083£8-5c59-7474-d0cb-fbc3£f7284f1b.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 119

Modifying a VM's NVIDIA vGPU Configuration

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-£fbc3£7284f1b
extra args='enable profiling=1l'

The setting of this parameter is preserved after a guest VM is restarted and after the
hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Red Hat Enterprise
Linux KVM

Set the enable_profiling vGPU plugin parameter for the mdev device file that represents
the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin Parameters on a
Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit profilers is powered off.

In advanced VM attributes, set the peciPassthruvgpu-id.cfg.enable_profiling vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting vGPU
Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are enabling
profilers for the second vGPU, set pciPassthrul.cfg.enable_profilingto 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 120

Chapter 7. Monitoring GPU
Performance

NVIDIA vGPU software enables you to monitor the performance of physical GPUs and virtual
GPUs from the hypervisor and from within individual guest VMs.

You can use several tools for monitoring GPU performance:

» From any supported hypervisor, and from a guest VM that is running a 64-bit edition of
Windows or Linux, you can use NVIDIA System Management Interface, nvidia-smi.

» From Citrix Hypervisor, you can use Citrix XenCenter.
» From a Windows guest VM, you can use these tools:
» Windows Performance Monitor

» Windows Management Instrumentation (WMI]

7.1. NVIDIA System Management
Interface nvidia-smi

NVIDIA System Management Interface, nvidia-smi, is a command-line tool that reports
management information for NVIDIA GPUs.

The nvidia-smi tool is included in the following packages:
» NVIDIA Virtual GPU Manager package for each supported hypervisor
» NVIDIA driver package for each supported guest 0S

The scope of the reported management information depends on where you run nvidia-smi
from:

» From a hypervisor command shell, such as the Citrix Hypervisor domQ shell or VMware
ESXi host shell, nvidia-smi reports management information for NVIDIA physical GPUs
and virtual GPUs present in the system.

S| Note: When run from a hypervisor command shell, nvidia-smi will not list any GPU that is
currently allocated for GPU pass-through.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 121

Monitoring GPU Performance

» From a guest VM, nvidia-smi retrieves usage statistics for vGPUs or pass-through GPUs
that are assigned to the VM.

From a Windows guest VM, you can run nvidia-smi from a command prompt by changing
to the C:\Program Files\NVIDIA Corporation\NVSMI folder and running the nvidia-
smi.exe command.

7.2. Monitoring GPU Performance from a
Hypervisor

You can monitor GPU performance from any supported hypervisor by using the NVIDIA System
Management Interface nvidia-smi command-Lline utility. On Citrix Hypervisor platforms, you
can also use Citrix XenCenter to monitor GPU performance.

S Note: You cannot monitor from the hypervisor the performance of GPUs that are being used for
GPU pass-through. You can monitor the performance of pass-through GPUs only from within
the guest VM that is using them.

7.2.1. Using nvidia-smi to Monitor GPU
Performance from a Hypervisor

You can get management information for the NVIDIA physical GPUs and virtual GPUs present
in the system by running nvidia-smi from a hypervisor command shell such as the Citrix
Hypervisor domQ shell or the VMware ESXi host shell.

Without a subcommand, nvidia-smi provides management information for physical GPUs. To
examine virtual GPUs in more detail, use nvidia-smi with the vgpu subcommand.

From the command line, you can get help information about the nvidia-smi tool and the
vgpu subcommand.

Help Information Command

A'list of subcommands supported by the nvidia-smi tool. Note nvidia-smi -h

that not all subcommands apply to GPUs that support NVIDIA vGPU

software.

A'list of all options supported by the vgpu subcommand. nvidia-smi vgpu -h

7.2.1.1. Getting a Summary of all Physical GPUs in the
System

To get a summary of all physical GPUs in the system, along with PCI bus IDs, power state,
temperature, current memory usage, and so on, run nvidia-smi without additional
arguments.

Each vGPU instance is reported in the Compute processes section, together with its physical
GPU index and the amount of frame-buffer memory assigned to it.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 122

Monitoring GPU Performance

In the example that follows, three vGPUs are running in the system: One vGPU is running on

each of the physical

GPUs 0, 1, and 2.

[root@vgpu ~]# nvidia-smi
Fri Aug 12 09:26:18 2022

- +
| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |
|—— o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| + n |
| 0 Tesla M60 On | 0000:83:00.0 Off | Off |
| N/A 31C P8 23W / 150W | 1889MiB / 8191MiB | 7% Default |
- - - +
| 1 Tesla M60 On | 0000:84:00.0 Ooff | Off |
| N/A 26C P8 23W / 150W | 926MiB / 8191MiB | 9% Default |
- - = o +
| 2 Tesla M10 On | 0000:82:00.0 Off | N/A |
| N/A 23C P8 10w / 53W | 1882MiB / 8191MiB | 12% Default |
e it o o +
| 3 Tesla MI10 On | 0000:8B:00.0 Off | N/A |
| N/A 26C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
o o o +
| 4 Tesla MI10 On | 0000:8C:00.0 Off | N/A |
| N/A 34C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
- - - +
| 5 Tesla M10 On | 0000:8D:00.0 Ooff | N/A |
| N/A 32C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
- - = o +
- +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| 0 11924 C+G /usr/1lib64/xen/bin/vgpu 1856MiB |
| 1 11903 C+G /usr/1lib64/xen/bin/vgpu 896MiB |
| 2 11908 C+G /usr/1lib64/xen/bin/vgpu 1856MiB |
t———————— +

[root@vgpu ~]#

7.2.1.2. Getting a Summary of all vGPUs in the System

To get a summary of the vGPUs currently that are currently running on each physical GPU in
the system, run nvidia-smi vgpu without additional arguments.

[root@vgpu ~]# nvidia-smi vgpu
Fri Aug 12 09:27:06 2022

ettt et +
| NVIDIA-SMI 470.141.05 Driver Version: 470.141.05 |
| —m e e o —— +
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
| ; f |
| 0 Tesla M60 | 0000:83:00.0 | 7% |
| 11924 GRID M60-2Q | 3 Win7-64 GRID test 2 | 6% |
e ittt e e R i ittt b e o —— +
| 1 Tesla M60 | 0000:84:00.0 | 9% |
| 11903 GRID M60-1B | 1 Win8.1-64 GRID test 3 | 8% |
it ittt T e R it ettt BT e o —— +
| 2 Tesla M10 | 0000:8A:00.0 | 12% |
| 11908 GRID M10-2Q | 2 Win7-64 GRID test 1 | 10% |
it ittt e T T e e e o —— +
| 3 Tesla MI10 | 0000:8B:00.0 | 0% |
e ittt e e R i ittt b e o —— +
| 4 Tesla MI10 | 0000:8C:00.0 | 0% |
it ittt e T T e e e o —— +
| 5 Tesla M10 | 0000:8D:00.0 | 0% |

Virtual GPU Software

DU-06920-001 _v13.0 through 13.4 | 123

Monitoring GPU Performance

e e Rt +
[root@vgpu ~]#

7.2.1.3. Getting vGPU Details

To get detailed information about all the vGPUs on the platform, run nvidia-smi vgpu with
the —q or -—query option.

To limit the information retrieved to a subset of the GPUs on the platform, use the —i or --id
option to select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -q -i 1
GPU 00000000:86:00.0

Active vGPUs g 1
vGPU ID : 3251634178
VM ID : 1
VM Name : Win7
vGPU Name : GRID M60-80Q
vGPU Type 22
vGPU UUID : b8c6d0el-dl67-11e8-b8c9-55705e5a54a6
Guest Driver Version 411.81
License Status Unlicensed
Accounting Mode : Disabled
Accounting Buffer Size: 4000
Frame Rate Limit 3 FPS
FB Memory Usage
Total 8192 MiB
Used 675 MiB
Free 7517 MiB
Utilization
Gpu 3 %
Memory 0 %
Encoder 0 %
Decoder 0 %
Encoder Stats
Active Sessions HI
Average FPS 3 @
Average Latency : 0
FBC Stats
Active Sessions 3 1
Average FPS 227
Average Latency 4403

[root@vgpu ~]#

7.2.1.4.

To monitor vGPU engine usage across multiple vVGPUs, run nvidia-smi vgpu with the —u or
--utilization option.

Monitoring vGPU engine usage

For each vGPU, the usage statistics in the following table are reported once every second. The
table also shows the name of the column in the command output under which each statistic is
reported.

Statistic Column
3D/Compute sm
Memory controller bandwidth mem
Video encoder enc

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 124

Monitoring GPU Performance

Statistic Column
Video decoder dec
Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU is

using. For example, a vGPU that uses 20% of the GPU’s graphics engine’s capacity will report
20%.

To modify the reporting frequency, use the -1 or --1loop option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -u

gpu vgpu sm mem enc dec

Idx Id % % % %
0 11924 6 3 0 0
1 11903 8 3 0 0
2 11908 10 4 0 0
3 - —_ —_ — -
4 = = = = —
5 = = = = -
0 11924 6 3 0 0
1 11903 9 3 0 0
2 11908 10 4 0 0
3 = = = = -
4 = = = = —_
5 - - _ _ —
0 11924 6 3 0 0
1 11903 8 3 0 0
2 11908 10 4 0 0
3 - —_ —_ — -
4 = = —
5 = = = = -

~Clroot@vgpu ~]#

7.2.1.5. Monitoring vGPU engine usage by applications

To monitor vGPU engine usage by applications across multiple vGPUs, run nvidia-smi vgpu
with the -p option.

For each application on each vGPU, the usage statistics in the following table are reported
once every second. Each application is identified by its process ID and process name. The
table also shows the name of the column in the command output under which each statistic is
reported.

Statistic Column
3D/Compute sm
Memory controller bandwidth mem
Video encoder enc
Video decoder dec

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 125

Monitoring GPU Performance

Each reported percentage is the percentage of the physical GPU's capacity used by an
application running on a vGPU that resides on the physical GPU. For example, an application
that uses 20% of the GPU’s graphics engine’s capacity will report 20%.

To modify the reporting frequency, use the -1 or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -p

GPU vGPU process process sm mem enc dec

Idx Id Id name % % % %
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 32 25 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257911 656 DolphinVS.exe 32 24 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257869 4432 FurMark.exe 38 30 0 0
1 257911 656 DolphinVS.exe 19 14 0 0
1 257969 4552 FurMark.exe 38 30 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257848 3220 Balls64.exe 16 12 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257911 656 DolphinVS.exe 16 12 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257911 656 DolphinVS.exe 32 25 0 0
1 257969 4552 FurMark.exe 64 50 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257911 656 DolphinVS.exe 16 12 0 0
1 257969 4552 FurMark.exe 64 49 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257969 4552 FurMark.exe 64 49 0 0

[root@vgpu ~]#

7.2.1.6. Monitoring Encoder Sessions

S Note: Encoder sessions can be monitored only for vGPUs assigned to Windows VMs. No
encoder session statistics are reported for vGPUs assigned to Linux VMs.

To monitor the encoder sessions for processes running on multiple vGPUs, run nvidia-smi
vgpu With the —es or -—encodersessions option.

For each encoder session, the following statistics are reported once every second:

GPU ID

vGPU ID

Encoder session ID

PID of the process in the VM that created the encoder session

Codec type, for example, H.264 or H.265

vV v v v VY

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 126

Monitoring GPU Performance

Encode horizontal resolution
Encode vertical resolution

One-second trailing average encoded FPS

vV vV v Vv

One-second trailing average encode latency in microseconds
To modify the reporting frequency, use the -1 or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -es

GPU vGPU Session Process Codec H V Average Average

Idx Id Id Id Type Res Res FPS Latency (us)
1 21211 2 2308 H.264 1920 1080 424 1977
1 21206 3 2424 H.264 1920 1080 0 0
1 22011 1 3676 H.264 1920 1080 374 1589
1 21211 2 2308 H.264 1920 1080 360 807
1 21206 3 2424 H.264 1920 1080 325 1474
1 22011 1 3676 H.264 1920 1080 313 1005
1 21211 2 2308 H.264 1920 1080 329 1732
1 21206 3 2424 H.264 1920 1080 352 1415
1 22011 1 3676 H.264 1920 1080 434 1894
1 21211 2 2308 H.264 1920 1080 362 1818
1 21206 3 2424 H.264 1920 1080 296 1072
1 22011 1 3676 H.264 1920 1080 416 1994
1 21211 2 2308 H.264 1920 1080 444 1912
1 21206 3 2424 H.264 1920 1080 330 1261
1 22011 1 3676 H.264 1920 1080 436 1644
1 21211 2 2308 H.264 1920 1080 344 1500
1 21206 3 2424 H.264 1920 1080 393 1727
1 22011 1 3676 H.264 1920 1080 364 1945
1 21211 2 2308 H.264 1920 1080 555 1653
1 21206 3 2424 H.264 1920 1080 295 925
1 22011 1 3676 H.264 1920 1080 372 1869
1 21211 2 2308 H.264 1920 1080 326 2206
1 21206 3 2424 H.264 1920 1080 318 1366
1 22011 1 3676 H.264 1920 1080 464 2015
1 21211 2 2308 H.264 1920 1080 305 1167
1 21206 3 2424 H.264 1920 1080 445 1892
1 22011 1 3676 H.264 1920 1080 361 906
1 21211 2 2308 H.264 1920 1080 353 1436
1 21206 3 2424 H.264 1920 1080 354 1798
1 22011 1 3676 H.264 1920 1080 373 1310

~"C[root@vgpu ~]#

7.2.1.7. Monitoring Frame Buffer Capture (FBC) Sessions

To monitor the FBC sessions for processes running on multiple vGPUs, run nvidia-smi vgpu
with the -fs or --fbcsessions option.

For each FBC session, the following statistics are reported once every second:

GPU ID

vGPU ID

FBC session ID

PID of the process in the VM that created the FBC session

Display ordinal associated with the FBC session.

vV vV v v VY

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 127

Monitoring GPU Performance

> FBC session type

» FBC session flags

> Capture mode

> Maximum horizontal resolution supported by the session

> Maximum vertical resolution supported by the session

> Horizontal resolution requested by the caller in the capture call

> Vertical resolution requested by the caller in the capture call

> Moving average of new frames captured per second by the session

» Moving average new frame capture latency in microseconds for the session
To modify the reporting frequency, use the -1 or --1oop option.

To limit monitoring to a subset of the GPUs on the platform, use the -1 or --id option to
select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -fs
GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y% Average Average
Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)
O — — — — — — —

1 3251634178 - - - - - -

1 3251634178 = - - = = -

2 = = = = = = =

0 — — — — — — —

1 3251634178 - - - - - -

1 3251634178 = - - = = -

2 = = = = = = =

0 — — — — — — —

1 3251634178 - - - - - -

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 128

Monitoring GPU Performance

2 — — — — — — —

GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y Average Average

Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Unknown 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 25 39964

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 25 39964

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 129

Monitoring GPU Performance

GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y% Average Average

Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 135 7400

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 227 4403

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 227 4403

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y% Average Average

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 130

Monitoring GPU Performance

Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

~"C[root@vgpu ~]#

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 131

Monitoring GPU Performance

7.2.1.8.

To list the virtual GPU types that the GPUs in the system support, run nvidia-smi vgpu with
the —s or ——supported option.

Listing Supported vGPU Types

To limit the retrieved information to a subset of the GPUs on the platform, use the -i or --id
option to select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -s -i 0

GPU 0000:

GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
[root@vg

83:00.0
M60-0B
M60-0Q
M60-1A
M60-1B
M60-1Q
M60-2A
M60-2Q
M60-4A
M60-4Q
M60-8A
M60-8Q
pu ~1#

To view detailed information about the supported vGPU types, add the —v or --verbose option:

[root@vgpu ~]# nvidia-smi vgpu -s -i 0 -v | less
GPU 00000000:83:00.0
vGPU Type ID Oxb

Name GRID M60-0B
Class NVS
Max Instances 16
Device ID 0x13f210de
Sub System ID 0x13f21176
FB Memory 512 MiB
Display Heads 2
Maximum X Resolution 2560
Maximum Y Resolution 1600
Frame Rate Limit 45 FPS

GRID License

GRID-Virtual-PC,2.0;GRID-Virtual-WS,2.0;GRID-

Virtual-WS-Ext,2.0;Quadro- Vlrtual DWS, 5.0

vGPU Type ID Oxc
Name GRID M60-0Q
Class Quadro
Max Instances 16
Device ID 0x13f210de
Sub System ID 0x13f2114c
FB Memory 512 MiB
Display Heads 2
Maximum X Resolution 2560
Maximum Y Resolution 1600
Frame Rate Limit 60 FPS

GRID License

GRID-Virtual-WS,2.0;GRID-Virtual-WS-Ext,2.0;Quadro-

Virtual-DWS,5.0
vGPU Type ID 0xd
Name GRID M60-1A
Class NVS
Max Instances 8

froot@vgpu ~1#

Virtual GPU Software

DU-06920-001 _v13.0 through 13.4 | 132

Monitoring GPU Performance

7.2.1.9. Listing the vGPU Types that Can Currently Be
Created

To list the virtual GPU types that can currently be created on GPUs in the system, run nvidia-
smi vgpu with the —c or --creatable option.

This property is a dynamic property that varies for each GPU depending on whether MIG mode
Is enabled for the GPU.

> |f MIG mode is not enabled for the GPU, or if the GPU does not support MIG, this property
reflects the number and type of vGPUs that are already running on the GPU.

» If no vGPUs are running on the GPU, all vGPU types that the GPU supports are listed.

> |f one or more vGPUs are running on the GPU, but the GPU is not fully loaded, only the
type of the vVGPUs that are already running is listed.

» If the GPU is fully loaded, no vGPU types are listed.

» If MIG mode is enabled for the GPU, the result reflects the number and type of GPU
instances on which no vGPUs are already running.

» If no GPU instances have been created, no vGPU types are listed.
» |If GPU instances have been created, only the vGPU types that correspond to GPU
instances on which no vGPU is running are listed.

» If avGPU is running on every GPU instance, no vGPU types are listed.

To limit the retrieved information to a subset of the GPUs on the platform, use the -i or --id
option to select one or more vGPUs.

[root@vgpu ~]# nvidia-smi vgpu -c -i 0
GPU 0000:83:00.0

GRID M60-2Q
[root@vgpu ~]+#

To view detailed information about the vGPU types that can currently be created, add the —v or
--verbose option.

7.2.2. Using Citrix XenCenter to monitor GPU
performance

If you are using Citrix Hypervisor as your hypervisor, you can monitor GPU performance in
XenCenter.

1. Click on a server’s Performance tab.

2. Right-click on the graph window, then select Actions and New Graph.

3. Provide a name for the graph.

4. In the list of available counter resources, select one or more GPU counters.

Counters are listed for each physical GPU not currently being used for GPU pass-through.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 133

Monitoring GPU Performance

Figure 26. Using Citrix XenCenter to monitor GPU performance

© XenCenter [e@=]
file View Pool Sever VM Storage Templates Tools Help

@ Back - @ Forward - | [@ Add New Server New Pool 5 New Storage T New VM | (@) Shut Down &) Reboot (1) Suspend

. Q/[® sme Loggedin as Localroot account |

Console| Performance |Users | Search
Performance Graphs

Search.

51 ¢ XenCenter
cREE
1@ Rs1-Server-RTM (|

1@ Rs1-Server-RTM (.

59 DVD drives
5 Removable storag ® .
© RS1-Server-RTM CPU Performance @J"' 25,2017 333 PM
B localhost 00 [cuo n Jul 25, 2017 3:27 PM
B xenserver-sm - CPUl E|
@ xs72 % — CPU2 i
U3
- CcPU4
— — A0 - CPUS -
© New Graph =] 10:02AM 10:04 AM 10:06 AM
Name: Performance Graph 128 [~ Used Memory
GB
Search, Q
0
il Datasource Type s 1002AM 1004 AM 1006 AM
[7] cPUB4-avg-freq Custom []
-avg-| L)
[] cPuss-avg-freq Custom 100 [~ NICO Receive =
[] cPU86-avg-freq Custom [} — NIC 0 Send
[C] cPus7-avg-freq Custom L] MBps |~ mg % 'S?E(ZIVS H
[] GM204GL [Tesla M60] 0000:04:00.0 Free Memory GPU L) — NIC2 Pecsive
GM204GL [Tesla M60] 0000:04:00.0 Memory Utilization GPU [m] 0 — NIC 2 Send -
] GM204GL [Tesla M60] 0000:04:00.0 Power Usage GPU m 10:02AM 10:04 AM 1006 AM
< 7] GM204GL [Tesla M60] 0000:04:00.0 Temperature GPU
[] GM204GL [Tesla M60] 0000:04:00.0 Used Memory GPU L)
[] GM204GL [Tesla M60] 0000:04:00.0 Utilization GPU L]
[7] GM204GL [Tesla M60] 0000:05:00.0 Free Memory GPU L
A Infrasti |7 GM204GL [Tesla M60] 0000:05:00.0 Memory Utiization GPU L}
9 Object| | (] GM204GL [Tesla M60] 0000:05:00.0 Power Usage GPU u
B, Organ || GM204GL [Tesla M60] 0000:05,00.0 Temperature GPU m
o [7] GM204GL [Tesla M60] 0000:05:00.0 Used Memory GPU LI
Saved| | [7] GM204GL [Tesla M60] 0000:05:000 Utilization GPU LB
A Notifiq | IntelliCache Cache Hits Storage m- 900 AM 930 AM 10:00 AM
/
Clear Al A ! /!

7.3. Monitoring GPU Performance from a
Guest VM

You can use monitoring tools within an individual guest VM to monitor the performance

of vGPUs or pass-through GPUs that are assigned to the VM. The scope of these tools is
limited to the guest VM within which you use them. You cannot use monitoring tools within an
individual guest VM to monitor any other GPUs in the platform.

For a vGPU, only these metrics are reported in a guest VM:
» 3D/Compute

» Memory controller

» Video encoder

» Video decoder

» Frame buffer usage

Other metrics normally present in a GPU are not applicable to a vGPU and are reported as
zero or N/A, depending on the tool that you are using.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 134

Monitoring GPU Performance

In guest VMs, you can use the nvidia-smi command to retrieve statistics for the total usage
by all applications running in the VM and usage by individual applications of the following
resources:

GPU

Video encoder

Video decoder

Frame buffer
To use nvidia-smi to retrieve statistics for the total resource usage by all applications

running in the VM, run the following command:

nvidia-smi dmon

The following example shows the result of running nvidia-smi dmon from within a Windows
guest VM.

Figure 27. Using nvidia-smi from a Windows guest VM to get total
resource usage by all applications

Bl Command Prompt = O x

k
k
K
k
K
:
K
[
[i [: %]
k
k
k
£
k
k
K
[

\Program Files\NVIDIA Corporation\NVSMI >

To use nvidia-smi to retrieve statistics for resource usage by individual applications running
in the VM, run the following command:

nvidia-smi pmon

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 135

Monitoring GPU Performance

Figure 28. Using nvidia-smi from a Windows guest VM to get resource
usage by individual applications

BN C\Windows\system32\cmd.exe o || B 2R

opyright <c> 280? Microsoft Corporation. All rights reserved.

“Program Files“NUIDIA Corporation“~HUSHMI}nvidia—smi Pmon
pid type =m mem command
it CrG name

b56 C+iG Dolphinls.exe
2528 C+G chrome .exe
4216 C+G Ballzh4.exe
4472 C+G FurMark.exe
4868 C+G Ballsb4.exe
b56 C+G Dolphinls .. exe
2528 C+G chrome .exe
4216 C+G Ballsb4.exe
4472 C+G FurMark.exe
4868 C+G Ballzb4.exe
656 C+G Dolphinls _exe
2528 C+G chrome . exe
4216 C+G Ballzb4d.exe
4472 C+G FurMark.exe
4868 C+G Ball=z64 . exe
b56 C+iG Dolphinls.exe
2528 C+G chrome .exe
4216 C+G Ball=z64.exe
4472 C+G FurMark.exe
4868 C+G Ballsb4.exe
656 C+G Dolphinls _exe
2528 C+G chrome .exe
4216 C+G Ballsb4.exe
4472 C+G FurMark.exe
4868 C+G Ballz6t4d.exe
656 C+G Dolphinls . exe
2528 C+G chrome .exe
4216 C+G
4472 C+G
4868 C+G
656 C+G
2528 C+G
4216 C+G
4472 C+G
4868 C+G
656 C+G
2528 C+G
4216 C+G
4472 C+G
4868 C+G
656 C+G
2528 C+G
4216 C+G
4472 C+G

o]
=
7]
=9
m
[x]

]

5]

b
=%

b

5]

[

=

=Y
[y

Ballzh4.exe
FurMark.exe
Ballsb4.exe
Dolphinls .. exe
chrome .exe
Ball=b4.exe
FurMark.exe
Ballzb4.exe
Dolphinls . exe
chrome . exe
Ballzb4.exe
FurMark.exe
Ball=zh4.exe
Dolphinls.exe
chrome .exe
Ballzh4.exe
FurMark.exe

ke
[

b
=Y

5]

N YA ACYARANAIEIWARRMN AR RWERE N
=

SN el IaMAICYANaSAERARNUYERSREHEEX
il fu ool ool oo oo oo oo oo ool oo B oo g

[l iRl oo o ool oo oo oo oo bl ool o fofuo o oo oo oo B oo BB

3]
=Y

In Windows VMs, GPU metrics are available as Windows Performance Counters through the
NVIDIA GPU object.

Any application that is enabled to read performance counters can access these metrics. You
can access these metrics directly through the Windows Performance Monitor application that
is included with the Windows OS.

The following example shows GPU metrics in the Performance Monitor application.

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 136

https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc749249%28v=ws.11%29.aspx

Monitoring GPU Performance

Figure 29. Using Windows Performance Monitor to monitor GPU
performance
| @} Performance Monitor E\@ 1
(%) File Action View Window Help HER
| 2EE -
® Performance EREENMEEYIETEELNEN

4 (g Monitoring Tools
BE Performance Monitor

= \ANVIDIA-PC
> L3 Data Collector Sets NVIDIA GPU #0 GRID M10-2Q (id=1, NVAPI ID=11)
> g Reports % FB Usage 0.000
% GPU Memory Usage 10,000
% GPU Usage 1,000
% Video Decoder Usage 0.000
% Video Encoder Usage 0,000

On vGPUs, the following GPU performance counters read as 0 because they are not applicable
to vGPUs:

% Bus Usage

% Cooler rate

Core Clock MHz

Fan Speed

Memory Clock MHz

PCI-E current speed to GPU Mbps

PCI-E current width to GPU

PCI-E downstream width to GPU

Power Consumption mW

vV vV v v v vV v v v v

Temperature C

7.3.3. Using NVWMI to monitor GPU performance

In Windows VMs, Windows Management Instrumentation (WMI) exposes GPU metrics in
the ROOT\CIMV2\NV namespace through NVWMI. NVWMI is included with the NVIDIA driver
package. After the driver is installed, NVWMI help information in Windows Help format is
available as follows:

C:\Program Files\NVIDIA Corporation\NVIDIA WMI Provider>nvwmi.chm

Virtual GPU Software DU-06920-001 _v13.0 through 13.4 | 137

https://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx

Monitoring GPU Performance

Any WMI-enabled application can access these metrics. The followi