Transact-SQL Data Definition
Language (DDL) Reference

SQL Server 2012 Books Online

Reference

Microsoft

Transact-SQL Data Definition
Language (DDL) Reference

SQL Server 2012 Books Online

Summary: Data Definition Language (DDL) is a vocabulary used to define data
structures in SQL Server 2012. Use these statements to create, alter, or drop data
structures in an instance of SQL Server.

Category: Reference

Applies to: SQL Server 2012

Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ff848799.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents

Data Definition Language (DDL) Statements (Transact-SQL) ..o 7
ALTER STAtEMENTS. ...ttt st 7
ALTER APPLICATION ROLE...... ottt eese s sssssse s sasessssssssssssssssssessesssssssssssesasssnns 8
ALTER ASSEMBLY ...ttt sese s st s ssss st es st sesssssnees 11
ALTER ASYMMETRIC KEY ...itieeiuiireeeeeeeiessieeesesessassssssssssssssssssssssssssesssssssssssssssssssssssssesssessssssssssnssns 15
ALTER AUTHORIZATIONcotiiieeeieeeiseeeeeeseeesisesse st sssssssessssss st sssssssssssesssssssssasssssssssssssssssssssssessssssssns 18
ALTER AVAILABILITY GROUP.......coiiieeeereieneieeise it sssssssssssssesssessssssssssssssssssesssssasessnses 22
ALTER BROKER PRIORITY......costutriunrireineereeessissesssesssssssesssssssssssssssssssssssssssssessssssssssssssssssssessssssssssees 37
ALTER CERTIFICATE ...ttt ssse s esssssse st ss st st ssss st ss s s ssses 40
ALTER CREDENTIAL. ..ottt ittt sssessse s esss st sesssssss st st ssss st sesssessssssssssssssesssssssssnses 43
ALTER CRYPTOGRAPHIC PROVIDER.......oostierrieieeireissinesisseissssssessesssssssssssssssssssssssssssssssssssssssens 44
ALTER DATABASE ...ttt st bbb 46
ALTER DATABASE File and Filegroup Options.........cccccvninrineeneeneinsieeisseessessesssessesesssssesnns 51
ALTER DATABASE SET OPTIONS ...ttt ssssese s sssessesssssssssssssssessesssssnes 64
ALTER DATABASE Database MirTOrNgcoccnunineenneensinsiesesessssssssssssssesssssssssssssssssesssssssees 96
ALTER DATABASE SET HADR. ...ttt sssssssesss s ssssssssssssssssssssssssssssssssssnns 102
ALTER DATABASE Compatibility LEVEL......c.ovuieieieeeeeee e 105
ALTER DATABASE AUDIT SPECIFICATIONotiiiriereireeeseeeseeeseseessssssssssssssssssssssssssssssssssssssses 116
ALTER DATABASE ENCRYPTION KEY......oosiirreurrierrirniinessissineeesesssees 119
ALTER ENDPOINT ...oomtitriiertreiisettsetsesiesisse i sssse s st ssse sttt sssesssnessne 120
ALTER EVENT SESSION ...ttt sttt sss st ssss s s ssssssssssssssssssssssssssssssssnssas 123
ALTER FULLTEXT CATALOG......ccoviereerireeieiensesssssssessassens 133
ALTER FULLTEXT INDEX.....coiirrierriieeeieriesessieeissessesens 135
ALTER FULLTEXT STOPLIST ...ovitrieeeeiereeeeiiseesseesssssssssssesssesssssssssssssssssssens 144
ALTER FUNCTION ...ttt sise i sssesssse s sssse s s s sssse s sssessssessssssssessssssssesssce 146
ALTER INDEX ...ttt ettt st st 157
ALTER LOGIN ...ttt stsse s s s e bs et s bbbt st 174
ALTER MASTER KEY....oiiriirierrieneireeiesiesisssnsses 178
ALTER MESSAGE TYPE.......ioireieieeeisseiseire sttt ssssssssssssssssss s ssssssssssssssssssssssssssssssssssssnssas 180
ALTER PARTITION FUNCTION.......stritreeriinrirnreissessssssssesssssssssssssssssessnsens 182
ALTER PARTITION SCHEME ...ttt ssss s ssnsens 185
ALTER PROCEDURE ..ottt ss s sss s st ss s ssss et sssssseses 187
ALTER QUEUE ...ttt et 193
ALTER REMOTE SERVICE BINDINGccvturinrieieeieeeeeieeisesissssseesssssssesesssssssessesssessssssssssssssssssssens 197
ALTER RESOURCE GOVERNOR.......coiierretriiriineieeseeseisseiessse st ssss s sssssssesssessssssssssssssssssssssssesans 198
ALTER RESOURGCE POOL ...t ssssessssss s st sssssssssssssssssssssssssssssesens 203
ALTER ROLE.....ou ittt sssse s b s i bbb 206
ALTER ROUTE ...ttt sssse i s sesssse st st st 207
ALTER SCHEMA ...ttt et bbbt 211
ALTER SEARCH PROPERTY LIST....ciiitirrireireieneeieeeseieseseesssessssssssssssssessesssessssssessssssssssssssssssesssssssns 214

ALTER SEQUENCE ...t ssssesss s sassssse s ssss s sssss s ssssssasssenes 219

ALTER SERVER AUDIT ...ttt sesessssssesasesssss s s s s ssssssesssesssssssssssssesssessnsses 223

ALTER SERVER AUDIT SPECIFICATION ..ottt sev s ssassesesesssse s sasens 229
ALTER SERVER CONFIGURATION ..ottt sesssssesessvsssssesessssaesesssasassesasnsases 231
ALTER SERVER ROLE ...ttt s sasssensnns 236
ALTER SERVICE.........ouiieeeeeee ettt sas s s sass s s sassansanes 239
ALTER SERVICE MASTER KEY.....ooiueiieereeieeeeeieeseseeeeeessesse e ses s s sassses s sasssss s s sasssesssssssassanes 241
ALTER SYMMETRIC KEY ..ottt svssae s sssesss s sass s s s ses s sessassassasssassassanes 244
ALTER TABLE. ..ottt sas s sas s s sassass s s sassaessessessassanes 246
COIUMIN_AETTINITION ettt e e et aee s eee e sae s es e s seneasaesasseeassasaseasasensasens 273
CONUMN_CONSTIAINT ..ottt tee et etse e sets e s sses e senseassasnesesesenessnsssaessneas 277
computed_column_defiNItION ...ttt esssens 283
BADIE CONSTIAINT ..ottt st et st s e s sssssnsasnesseasaenessesaenssssasaenens 287
INAEX_OPTION .ottt ettt 292
ALTER TRIGGER ...ttt s s sas s sssassass s sassassassanes 297
ALTER USER ...ttt sss s s sns s sasssss s sassass s sassass s sasssssassanes 303
ALTER VIEW......oooieeeeeeeeevee et saes s aes s ss s s ssss s sass s s sassass s sassasssssnssassssasssssnssanes 307
ALTER WORKLOAD GROUP ...t veees s sssassses s s sas s sassssas s sassans 310
ALTER XML SCHEMA COLLECTION........oiiiereeeeeeeereeeveeeessessessessaes s sessassassssssessnssasssesssssassasssessas 315
CREATE STAtEMEBNTS......oeeeee ettt sttt s st a et st s s st s sasaesenas 322
CREATE AGGREGATE ...ttt sas s sass s sasssessaneas 323
CREATE APPLICATION ROLE.......ooieoeieeeeeeeeer e sestee s ses s sasssesss s sass s snssssss s s ssnssassans 325
CREATE ASSEMBLY ... ves s ss s sas s ssssassssssssassasssssassasssnes 327
CREATE ASYMMETRIC KEY ...t ses s s sss s sass s s s sas s sasssssassaens 331
CREATE AVAILABILITY GROUP.......ooeeeeeeeeeeeeeeeveeeeeesvesvsetes s sassass s snssasssssnssass s ssss s sanens 335
CREATE BROKER PRIORITY.....ouiuieeeeeieceeeeeeeseeeesessessssasssessssasssesssssssssssssssssssssssssssnssassassasssssassaseas 354
CREATE CERTIFICATE ... ss s ssssassssssssassnsssssssssassasssssassanees 361
CREATE COLUMNSTORE INDEX......ooiieieeeeeeeeeeeeeeeeeseseseesssesssessssessssssssssasssessnssssssssssssnssassssssessasens 366
CREATE CONTRACT ...t ssss s sasssssassssssssssssasssssssssssassasssssassassassassaseas 371
CREATE CREDENTIAL. ...ttt sessses s esssses s s s s s s sassass s s sssssssassassasssssanses 374
CREATE CRYPTOGRAPHIC PROVIDER.........ooeieeeeeeeeeeeeeeseseeeeeseessesssssesses s snsssss s sassassssssasens 376
CREATE DATABASE ...t sassss s snssass s sasssssaseas 378
CREATE DATABASE AUDIT SPECIFICATIONouivieieieeeeeeeeteeeeeeeete et seve s sesse s sanans 400
CREATE DATABASE ENCRYPTION KEY.....ootiiieeereeeieeeeeeeeeeeeee et sess s sevsesssesessssssssssasassens 403
CREATE DEFAULT ...ttt e s a s s sassasssasans 405
CREATE ENDPOINT ...ttt sas st s sass s sass s sansas 407
CREATE EVENT NOTIFICATION ...ttt ses s sessesss s se s sses s s sassans 414
CREATE EVENT SESSION ...t ses s sass s s s asssssassanean 418
CREATE FULLTEXT CATALOG........ ettt esves s ses s sse s sss s ssass s sanens 425
CREATE FULLTEXT INDEX....o it sesss s esae s sassses s sasssssssses s sasssassanens 427
CREATE FULLTEXT STOPLIST ...ttt ses s sass s sas s sassassass s sanens 434
CREATE FUNCTION ...ttt stes s sae s saes s sass s s s snssass s sassassassassanens 436
CREATE INDEX ...ttt ses s s ses s sass s s s sass s s s sassasssssassassassassns 457
CREATE LOGIN ...ttt ecvesveeeaes s ses s sassas s ses s sas s sass s s s s sasssssssssassassssssassassassassans 482
CREATE MASTER KEY.....ouiieeeeeieeeeeeeteesesveeeesessesveessss s s sas s ss s sassses s sssassasssessassassssssasens 488

CREATE MESSAGE TYPE. ...t sass s ssse s assesssss s ssssssssessssssans 489

CREATE PARTITION FUNCTION......coitiiiririinerieretieriesienisesssesssesssasesssesssessesssesssesssesssessnesserseces 492

CREATE PARTITION SCHEME ...ttt aesae st ses s sas s e sesaesans 497
CREATE PROCEDURE ...ttt ssssse s sssssesss s sss s sses s sssssssss s ssnses 501
CREATE QUEUE......ooeceeetse sttt sttt st eneenaes 524
CREATE REMOTE SERVICE BINDINGcoosvurieerinrieieeiesiesississessesssssssssessss s essssssessssssssssssssssnses 531
CREATE RESOURCE POOL ...t isssssiss s sssss s esssssssssssssssssssssssssassssssssssssssasssnnes 533
CREATE ROLE.....coeitiieieeesisiesis sttt bbbt s b sae st bbb anssnes 536
CREATE ROUTE ...ttt sss s sss s s s ssss s ssss st sss s sses s s sasssssssssansnsanses 538
CREATE RULE ...ttt ettt bbbt 543
CREATE SCHEMA ...ttt bbbt st 546
CREATE SEARCH PROPERTY LIST ...ttt seesissssssss s sssssssesssssssssessssssssssssssssssssns 550
CREATE SEQUENCE ...ttt s ss st sa s sannes 553
CREATE SERVER AUDIT ..ottt sssssssssssssessssss s s ssssses s ssssssssssssssesssssssssssnses 559
CREATE SERVER AUDIT SPECIFICATION ..ot ssseesiessessas st sssssssa s sssssssssssnes 565
CREATE SERVER ROLE.......oiiiiiiisieeisicesiesi st sass s ssss s st sss s sasssnns 567
CREATE SERVICE......oiiieiieieieeieesiss ettt sass st bbb s sannes 568
CREATE SPATIAL INDEX ...ttt sss st ssse s s sasssss s s s ssssssssssanssnnes 571
CREATE STATISTICS ... oottt st s s asssnes 585
CREATE SYMMETRIC KEY ...ttt sss s esse s ssssssssss s ssssssssssessssssssssssssanses 589
CREATE SYNONYM .ottt sss s se s s sa s sssnnes 594
CREATE TABLE ...ttt bbb st 598
IDENTITY (PrOPEITY) oot seeseesse e sssesse s ssssssesss s ssssssssss s ssssssssssssssssssssnns 627
CREATE TRIGGER ...ttt sess bbb s snes 630
CREATE TYPE.... oottt bbbt bbb e ansanes 645
CREATE USER.......ooeetrtee sttt bbbt 651
CREATE VIEW.....o ottt bbbt 659
CREATE WORKLOAD GROUP ...ttt sassss s s sanses 672
CREATE XML INDEX ...ttt ss st a s sanes 675
CREATE XML SCHEMA COLLECTION......oooirieeerterisseeseeseessessssae s s ssesae s ssssse s sssae s sesses 682
DISABLE TRIGGER ..ottt sse st bbbt s a s snes 689
DROP STALEMENTS ...ttt st ses s bbbt bbb s s sa b b s s e baneas 692
DROP AGGREGATE ...ttt s st sse st st sss s s s s s s ssesse st sssssensesssnsanes 693
DROP APPLICATION ROLE ...ttt siss s ssssssssssssssssssssssssssssessesssnsanns 693
DROP ASSEMBLY ...ttt sss s sss st s s ss st s s sss st sssssessessansnes 695
DROP ASYMMETRIC KEY ...ttt iesissssiesssssss s sssssss s ssssssssssssssssssessssssssssssssssssssssnsassssnsons 696
DROP AVAILABILITY GROUP ...ttt sssssssssssassssssss s s sssssns 697
DROP BROKER PRIORITYooriirierinrieiesiesiesississssssessss s sssssss s sssassssssnns 698
DROP CERTIFICATE ..ottt s ssssss s sses s ssss s s ssssse st esssssssssssssssssssnsasssnsens 699
DROP CONTRACT ...ttt ssssssssas s sasssssss st s ssss s s sassse s sssss s sssssessssssessssssnsasssessns 699
DROP CREDENTIAL ..ottt ssestessssssssssssss s st sssssssssssssssesssssssssssssssssssssssssssssssssassssssnns 700
DROP CRYPTOGRAPHIC PROVIDERoirierierieiiereneisiesissesissssssessssssssssssssssssesssssssssssssssssansanns 701
DROP DATABASE ...ttt sssss bbb st s s as s sssssen s s s seees 702
DROP DATABASE AUDIT SPECIFICATION ..ot ssssssssssssessssssessssssssanns 704
DROP DATABASE ENCRYPTION KEYovuiiieieerirrieeeeriesesissssiesiesss s sasssss s sessssssssssssssssssssssnsanes 706

DROP DEFAULT ...t sssess s ssassse s ass s s sass s s sasss s sssss s sesnnns 707

DROP ENDPOINTootiiitietierieierienieriesesesstasessessssse s s sssesasessesssessssssssssssesssesssesssssssssessnes 708

DROP EVENT NOTIFICATION ...ttt sssesasesasessesssesssesssessssssssssesssesssssssssessnes 709
DROP EVENT SESSION.....cotiiiiiiiitiitreieeietiesiesisesssesesesae e s ssssssesssesssesssessssssesssesssessssssnsssssnes 711
DROP FULLTEXT CATALOG ...t siseiseessesasesase e ssse e sese e sssssssssessesssssssesssenens 711
DROP FULLTEXT INDEXcoiiiiieieeieritietiesienisesiessesssssesssasesssesssesssesssessssssssssessnsssessssssesssenens 712
DROP FULLTEXT STOPLIST ... cimecisasecssese s ssssssssssssassssssssassssssss s s sassesness 713
DROP FUNCTIONooiiiciriiciisecisase s ssssssse s ssssssssssssessssssssssssssssssssssssssssssassessssssssesanes 714
DROP INDEX ...t sasesssssse s ssssssssssss s ssssessass s ssss s sssssssssssssessssssssssses 715
DROP LOGIN.....ouiiiiiiiiiiccicisiiecisseie s ssse s sssesssss s sasss s ssssssss s sasss s ssssessssssssssaes 725
DROP MASTER KEY ..ot sssssss s sssssssssssss s sssssssssssssssssssssans 725
DROP MESSAGE TYPE.....ooecctcii st sss s sssssss s ssss s sssssnaes 726
DROP PARTITION FUNCTIONociiiirirerierireietinerseeiseeaesiesisesssesaessessessesssssesssesssesssessssnessesses 727
DROP PARTITION SCHEME ...t ssss s sssssassesssssesans 728
DROP PROCEDURE........oiiiiiciiseiicaiecisssse s sasse s sssss s sssssess s s ssssssssessssssssssnnes 729
DROP QUEUE. ...t 730
DROP REMOTE SERVICE BINDINGcoetiirerirerneeerineiineeseisesiesisesisessesessesssessesssssesssesssenses 732
DROP RESOURCE POOL.......oiiiiiiiieieiiccineiie i sese s sssssssssassssssssssssssssssesssssssssssssssssnes 732
DROP ROLE ...t sss s ssss s ssss s s ssss s e 733
DROP ROUTE ...t sssse s sss s sssssssesssssssse s ssass s sssse s ssssesssssssssssessanes 735
DROP RULE........coiiciiiiieie et ssse s s ssse s s ssase s st sss s sassssassssessases 735
DROP SCHEMA ..ottt sa s 737
DROP SEARCH PROPERTY LIST ..cuiierieieineienieeetiesiesienisessessessesasessssssesssesssesssessssssnessessnenens 738
DROP SEQUENCE........ooiieieiiiieciiaiesissessesassass s sssssssesssss s sssss s sss s ssssssssesssssnsssanes 740
DROP SERVER AUDIToiiiiiieieiimceieeiesisesmse s ssaesssssssesssssssssssssessssssssessssssssssssessssesssssssessens 741
DROP SERVER AUDIT SPECIFICATIONcunirerereieeieeieeeeiesiesisesiessessesssesssesssssesssessessnesens 743
DROP SERVER ROLE.........oiiiiiecciceiecinecie s esssessssssessssssssessse s sssssssessssssssessssessans 744
DROP SERVICEooieiiiiceecieeiecaseessessse s s sssesssssssessssessse s e sssessssessssssssesssssssssssessanes 746
DROP SIGNATURE ...t sssesse s s ssssessssessesasss s assesssss s ssssesssssssesssnes 746
DROP STATISTICS ..ot sssse s s sesssse s ssssesssssssesssssssss s ssssssssssssesssssssessses 748
DROP SYMMETRIC KEY ..oooiieeieciciceiecisseesssssesssssss s sssssessesssssssssssssssssssssssessssssssessanes 749
DROP SYNONYM ...coiiiiiiiiiiisi s sssss s ss s ssss s s ssssssssssssens 750
DROP TABLE ...ttt sttt s 751
DROP TRIGGER ...ttt tase s ssssse s sse s s s s i sesssssssesans 754
DROP TYPE ..ottt st e ettt s 756
DROP USER ...ttt sass s sss s s sss s s saans 757
DROP VIEW ...ttt ss s s 758
DROP WORKLOAD GROUP.........iiiiiciieieiesiiecsssase s ssssssssssasssssssssss s s sasssaans 760
DROP XML SCHEMA COLLECTIONvuiiriineiirereiscrineieseinetiesiesssesiesssesenssesasesssssesssesssesssenees 761
ENABLE TRIGGER ...t ssssesas s s s ssss s seas 763
UPDATE STATISTICS ...t ssssese s ssssssssssss s sasss s ssssssssss s sssssssssasssseos 765

TRUNGCATE TABLE ...ttt ssss s sasssssss s sass s s sss s ssssssssssssssssssassoes 769

Data Definition Language (DDL) Statements
(Transact-SQL)

Data Definition Language (DDL) is a vocabulary used to define data structures in SQL Server
2012. Use these statements to create, alter, or drop data structures in an instance of SQL Server.

In this Section

ALTER Statements (Transact-SQL)
CREATE Statements (Transact-SQL)
DISABLE TRIGGER (Transact-SQL)
DISABLE TRIGGER (Transact-SQL)
DROP Statements (Transact-SQL)
ENABLE TRIGGER (Transact-SQL)
TRUNCATE TABLE (Transact-SQL)
UPDATE STATISTICS (Transact-SQL)

ALTER Statements

SQL Server Transact-SQL contains the following ALTER statements. Use ALTER statements to
modify the definition of existing entities. For example, use ALTER TABLE to add a new column to
a table, or use ALTER DATABASE to set database options.

In this Section

ALTER APPLICATION ROLE ALTER EVENT SESSION ALTER ROLE

ALTER ASSEMBLY ALTER FULLTEXT CATALOG ALTER ROUTE

ALTER ASYMMETRIC KEY ALTER FULLTEXT INDEX ALTER SCHEMA

ALTER AUTHORIZATION ALTER FULLTEXT STOPLIST ALTER SEARCH PROPERTY LIST
(Transact-SQL)

ALTER BROKER PRIORITY ALTER FUNCTION ALTER SEQUENCE (Transact-
SQL)

ALTER CERTIFICATE ALTER INDEX ALTER SERVER AUDIT

ALTER CREDENTIAL ALTER LOGIN ALTER SERVER AUDIT

SPECIFICATION
ALTER CRYPTOGRAPHIC ALTER MASTER KEY ALTER SERVICE
PROVIDER

ALTER DATABASE

ALTER MESSAGE TYPE

ALTER SERVICE MASTER KEY

ALTER DATABASE AUDIT
SPECIFICATION

ALTER PARTITION FUNCTION

ALTER SYMMETRIC KEY

ALTER DATABASE Compatibility | ALTER PARTITION SCHEME ALTER TABLE

Level

ALTER DATABASE Database ALTER PROCEDURE ALTER TRIGGER

Mirroring

ALTER DATABASE ENCRYPTION | ALTER QUEUE ALTER USER

KEY

ALTER DATABASE File and ALTER REMOTE SERVICE ALTER VIEW

Filegroup Options BINDING

ALTER DATABASE SET Options | ALTER RESOURCE ALTER WORKLOAD GROUP

GOVERNOR

ALTER ENDPOINT

ALTER RESOURCE POOL

ALTER XML SCHEMA
COLLECTION

See Also

CREATE Statements (Transact-SQL)

DROP Statements

ALTER APPLICATION ROLE

Changes the name, password, or default schema of an application role.

b Transact-SQL Syntax Conventions

Syntax

ALTER APPLICATION ROLE application_role name

WITH <set_item> [,..n]

<set_item> ::=

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

NAME = new_application_role name
| PASSWORD = 'password'
| DEFAULT_SCHEMA = schema_name

Arguments

application_role_name

Is the name of the application role to be modified.

NAME = new_application_role_name

Specifies the new name of the application role. This name must not already be used to refer
to any principal in the database.

PASSWORD = 'password’

Specifies the password for the application role. password must meet the Windows password
policy requirements of the computer that is running the instance of SQL Server. You should
always use strong passwords.

DEFAULT_SCHEMA = schema_name

Specifies the first schema that will be searched by the server when it resolves the names of
objects. schema_name can be a schema that does not exist in the database.

Remarks

If the new application role name already exists in the database, the statement will fail. When the
name, password, or default schema of an application role is changed the ID associated with the
role is not changed.

@ Important
Password expiration policy is not applied to application role passwords. For this reason,

take extra care in selecting strong passwords. Applications that invoke application roles
must store their passwords.

Application roles are visible in the sys.database_principals catalog view.

@ caution
In SQL Server 2005 the behavior of schemas changed from the behavior in earlier
versions of SQL Server. Code that assumes that schemas are equivalent to database users
may not return correct results. Old catalog views, including sysobjects, should not be
used in a database in which any of the following DDL statements has ever been used:
CREATE SCHEMA, ALTER SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP
USER, CREATE ROLE, ALTER ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE,
DROP APPROLE, ALTER AUTHORIZATION. In a database in which any of these statements
has ever been used, you must use the new catalog views. The new catalog views take
into account the separation of principals and schemas that is introduced in SQL Server
2005. For more information about catalog views, see EVENTDATA (Transact-SQL)).

http://msdn.microsoft.com/en-us/library/13bccc2f-ed3c-4b58-abd0-ca8bf34a66b8(SQL.110)�

Permissions

Requires ALTER ANY APPLICATION ROLE permission on the database. To change the default
schema, the user also needs ALTER permission on the application role. An application role can
alter its own default schema, but not its name or password.

Examples

A. Changing the name of application role

The following example changes the name of the application role weekly receipts to
receipts ledger.

USE AdventureWorks2012;

CREATE APPLICATION ROLE weekly receipts
WITH PASSWORD = '987Gbv8$76sPYY5m23' ,
DEFAULT SCHEMA = Sales;

GO

ALTER APPLICATION ROLE weekly receipts
WITH NAME = receipts_ ledger;

GO

B. Changing the password of application role
The following example changes the password of the application role receipts ledger.
ALTER APPLICATION ROLE receipts ledger
WITH PASSWORD = '897yUUbv867y$200nk2i’;
GO

C. Changing the name, password, and default schema

The following example changes the name, password, and default schema of the application role
receipts ledger all at the same time.

ALTER APPLICATION ROLE receipts ledger
WITH NAME = weekly ledger,
PASSWORD = '897yUUbv77bsrEE0Onk2i"',
DEFAULT SCHEMA = Production;

GO

See Also

Application Roles

CREATE APPLICATION ROLE (Transact-SQL)
DROP APPLICATION ROLE (Transact-SQL)
EVENTDATA (Transact-SQL)

10

http://msdn.microsoft.com/en-us/library/dca18b8a-ca03-4b7f-9a46-8474d5b66f76(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

ALTER ASSEMBLY

Alters an assembly by modifying the SQL Server catalog properties of an assembly. ALTER
ASSEMBLY refreshes it to the latest copy of the Microsoft .NET Framework modules that hold its
implementation and adds or removes files associated with it. Assemblies are created by using
CREATE ASSEMBLY.

=k Transact-SQL Syntax Conventions

Syntax

ALTER ASSEMBLY assembly name
[FROM <client_assembly_specifier> | <assembly_bits>]
[WITH <assembly_option> [,...n]]
[DROP FILE { file name [,...n]|ALL}]
[ADD FILE FROM
{
client file specifier [AS file name]
| file_bits AS file_name
VL. ..n]
1071
<client_assembly_specifier> :: =
"\\computer_name\share-name\[path\lmanifest file name'

| '[Local_path\lmanifest file name'

<assembly_bits> :: =

{ varbinary literal | varbinary expression }

<assembly_option> :: =
PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }
| VISIBILITY = { ON | OFF }
| UNCHECKED DATA

Arguments

assembly_name

Is the name of the assembly you want to modify. assembly_name must already exist in the
database.

11

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

FROM <client_assembly_specifier> | <assembly_bits>

Updates an assembly to the latest copy of the .NET Framework modules that hold its
implementation. This option can only be used if there are no associated files with the
specified assembly.

<client_assembly_specifier> specifies the network or local location where the assembly being
refreshed is located. The network location includes the computer name, the share name and
a path within that share. manifest_file_name specifies the name of the file that contains the
manifest of the assembly.

<assembly_bits> is the binary value for the assembly.

Separate ALTER ASSEMBLY statements must be issued for any dependent assemblies that
also require updating.

This option is not available in a contained database.

PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }

Specifies the .NET Framework code access permission set property of the assembly. For more
information about this property, see EVENTDATA (Transact-SQL).

The EXTERNAL_ACCESS and UNSAFE options are not available in a contained database.

VISIBILITY = { ON | OFF }
Indicates whether the assembly is visible for creating common language runtime (CLR)
functions, stored procedures, triggers, user-defined types, and user-defined aggregate
functions against it. If set to OFF, the assembly is intended to be called only by other
assemblies. If there are existing CLR database objects already created against the assembly,
the visibility of the assembly cannot be changed. Any assemblies referenced by
assembly_name are uploaded as not visible by default.

UNCHECKED DATA

By default, ALTER ASSEMBLY fails if it must verify the consistency of individual table rows.
This option allows postponing the checks until a later time by using DBCC CHECKTABLE. If
specified, SQL Server executes the ALTER ASSEMBLY statement even if there are tables in the
database that contain the following:

e Persisted computed columns that either directly or indirectly reference methods in the
assembly, through Transact-SQL functions or methods.

e CHECK constraints that directly or indirectly reference methods in the assembly.

e Columns of a CLR user-defined type that depend on the assembly, and the type
implements a UserDefined (non-Native) serialization format.

e Columns of a CLR user-defined type that reference views created by using WITH
SCHEMABINDING.

If any CHECK constraints are present, they are disabled and marked untrusted. Any tables

containing columns depending on the assembly are marked as containing unchecked data
until those tables are explicitly checked.

Only members of the db_owner and db_ddlowner fixed database roles can specify this
option.

For more information, see Implementing Assemblies.

[DROP FILE { file_name[,...n] | ALL }]

Removes the file name associated with the assembly, or all files associated with the assembly,
from the database. If used with ADD FILE that follows, DROP FILE executes first. This lets you
to replace a file with the same file name.

This option is not available in a contained database.

[ADD FILE FROM { client_file_specifier [AS file_name] | file_bitsAS file_name}

Uploads a file to be associated with the assembly, such as source code, debug files or other
related information, into the server and made visible in the sys.assembly files catalog view.
client_file_specifier specifies the location from which to upload the file. file_bits can be used
instead to specify the list of binary values that make up the file. file_name specifies the name
under which the file should be stored in the instance of SQL Server. file_name must be
specified if file_bits is specified, and is optional if client_file_specifier is specified. If file_name
is not specified, the file_name part of client_file_specifier is used as file_name.

This option is not available in a contained database.

Remarks

ALTER ASSEMBLY does not disrupt currently running sessions that are running code in the
assembly being modified. Current sessions complete execution by using the unaltered bits of
the assembly.

If the FROM clause is specified, ALTER ASSEMBLY updates the assembly with respect to the
latest copies of the modules provided. Because there might be CLR functions, stored
procedures, triggers, data types, and user-defined aggregate functions in the instance of SQL
Server that are already defined against the assembly, the ALTER ASSEMBLY statement rebinds
them to the latest implementation of the assembly. To accomplish this rebinding, the methods
that map to CLR functions, stored procedures, and triggers must still exist in the modified
assembly with the same signatures. The classes that implement CLR user-defined types and
user-defined aggregate functions must still satisfy the requirements for being a user-defined
type or aggregate.

@ caution
If WITH UNCHECKED DATA is not specified, SQL Server tries to prevent ALTER ASSEMBLY
from executing if the new assembly version affects existing data in tables, indexes, or
other persistent sites. However, SQL Server does not guarantee that computed columns,

13

http://msdn.microsoft.com/en-us/library/c228d7bf-a906-4f37-a057-5d464d962ff8(SQL.110)�

indexes, indexed views or expressions will be consistent with the underlying routines and
types when the CLR assembly is updated. Use caution when you execute ALTER
ASSEMBLY to make sure that there is not a mismatch between the result of an
expression and a value based on that expression stored in the assembly.

ALTER ASSEMBLY changes the assembly version. The culture and public key token of the
assembly remain the same.

ALTER ASSEMBLY statement cannot be used to change the following:

e The signatures of CLR functions, aggregate functions, stored procedures, and triggers in an
instance of SQL Server that reference the assembly. ALTER ASSEMBLY fails when SQL Server
cannot rebind .NET Framework database objects in SQL Server with the new version of the
assembly.

e The signatures of methods in the assembly that are called from other assemblies.

e The list of assemblies that depend on the assembly, as referenced in the DependentList
property of the assembly.

e The indexability of a method, unless there are no indexes or persisted computed columns
depending on that method, either directly or indirectly.

e The FillRow method name attribute for CLR table-valued functions.

e The Accumulate and Terminate method signature for user-defined aggregates.
e System assemblies.

e Assembly ownership. Use ALTER AUTHORIZATION (Transact-SQL) instead.

Additionally, for assemblies that implement user-defined types, ALTER ASSEMBLY can be used
for making only the following changes:

¢ Modifying public methods of the user-defined type class, as long as signatures or attributes
are not changed.

e Adding new public methods.
e Modifying private methods in any way.

Fields contained within a native-serialized user-defined type, including data members or base
classes, cannot be changed by using ALTER ASSEMBLY. All other changes are unsupported.

If ADD FILE FROM is not specified, ALTER ASSEMBLY drops any files associated with the
assembly.

If ALTER ASSEMBLY is executed without the UNCHECKED data clause, checks are performed to
verify that the new assembly version does not affect existing data in tables. Depending on the
amount of data that needs to be checked, this may affect performance.

Permissions

Requires ALTER permission on the assembly. Additional requirements are as follows:

e To alter an assembly whose existing permission set is EXTERNAL_ACCESS, the SQL Server
login must have EXTERNAL ACCESS permission on the server.

14

e To alter an assembly whose existing permission set is UNSAFE requires membership in the
sysadmin fixed server role.

e To change the permission set of an assembly to EXTERNAL_ACCESS, the SQL Server login
must have EXTERNAL ACCESS ASSEMBLY permission on the server.

e To change the permission set of an assembly to UNSAFE requires membership in the
sysadmin fixed server role.

e Specifying WITH UNCHECKED DATA requires membership in the sysadmin fixed server role.
For more information about assembly permission sets, see Designing Assemblies.

Examples

A. Refreshing an assembly

The following example updates assembly ComplexNumber to the latest copy of the .NET
Framework modules that hold its implementation.

Assembly ComplexNumber can be created by running the UserDefinedDataType sample
scripts. For more information, see User-Defined Type (UDT) Sample.

ALTER ASSEMBLY ComplexNumber

FROM 'C:\Program Files\Microsoft SQL
Server\90\Tools\Samples\1033\Engine\Programmability\CLR\UserDefinedDataType\C
S\ComplexNumber\obj\Debug\ComplexNumber.dll'

B. Adding a file to associate with an assembly

The following example uploads the source code file Class1.cs to be associated with assembly
MyClass. This example assumes assembly MyClass is already created in the database.

ALTER ASSEMBLY MyClass

ADD FILE FROM 'C:\MyClassProject\Classl.cs';

C. Changing the permissions of an assembly

The following example changes the permission set of assembly ComplexNumber from SAFE to
EXTERNAL ACCESS.

ALTER ASSEMBLY ComplexNumber WITH PERMISSION SET = EXTERNAL ACCESS

See Also

CREATE ASSEMBLY

DROP ASSEMBLY
EVENTDATA (Transact-SQL)

ALTER ASYMMETRIC KEY

Changes the properties of an asymmetric key.

15

http://msdn.microsoft.com/en-us/library/9c07f706-6508-41aa-a4d7-56ce354f9061(SQL.110)�
http://msdn.microsoft.com/en-us/library/a9b75f36-d7f5-47f7-94d6-b4448c6a2191(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

=5 Transact-SQL Syntax Conventions

Syntax
ALTER ASYMMETRIC KEY Asym Key Name <alter_option>

<alter_option> ::=

<password_change_option>

|

REMOVE PRIVATE KEY
<password_change_option> ::=

WITH PRIVATE KEY (<password_option> [, <password_option>])
<password_option> ::=

ENCRYPTION BY PASSWORD = 'strongPassword'

|
DECRYPTION BY PASSWORD = 'ol1dPassword’

Arguments
Asym_Key Name
Is the name by which the asymmetric key is known in the database.

REMOVE PRIVATE KEY

Removes the private key from the asymmetric key The public key is not removed.

WITH PRIVATE KEY
Changes the protection of the private key.

ENCRYPTION BY PASSWORD = 'stongPassword’

Specifies a new password for protecting the private key. password must meet the Windows
password policy requirements of the computer that is running the instance of SQL Server. If
this option is omitted, the private key will be encrypted by the database master key.

DECRYPTION BY PASSWORD = 'oldPassword’

Specifies the old password, with which the private key is currently protected. Is not required if
the private key is encrypted with the database master key.

Remarks

If there is no database master key the ENCRYPTION BY PASSWORD option is required, and the
operation will fail if no password is supplied. For information about how to create a database
master key, see OPEN MASTER KEY (Transact-SQL).

You can use ALTER ASYMMETRIC KEY to change the protection of the private key by specifying
PRIVATE KEY options as shown in the following table.

16

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

Change protection from ENCRYPTION BY PASSWORD DECRYPTION BY PASSWORD
Old password to new Required Required

password

Password to master key Omit Required

Master key to password Required Omit

The database master key must be opened before it can be used to protect a private key. For
more information, see OPEN MASTER KEY (Transact-SQL).

To change the ownership of an asymmetric key, use ALTER AUTHORIZATION.

Permissions
Requires CONTROL permission on the asymmetric key if the private key is being removed.

Examples

A. Changing the password of the private key

The following example changes the password used to protect the private key of asymmetric key
PacificSales09. The new password will be <enterStrongPasswordHere>.

ALTER ASYMMETRIC KEY PacificSales09
WITH PRIVATE KEY (

DECRYPTION BY PASSWORD

'<oldPassword>",

ENCRYPTION BY PASSWORD

'<enterStrongPasswordHere>") ;

GO

B. Removing the private key from an asymmetric key

The following example removes the private key from pacificSales19, leaving only the public
key.

ALTER ASYMMETRIC KEY PacificSalesl9 REMOVE PRIVATE KEY;
GO

C. Removing password protection from a private key

The following example removes the password protection from a private key and protects it with
the database master key.

OPEN MASTER KEY;
ALTER ASYMMETRIC KEY PacificSales09 WITH PRIVATE KEY (
DECRYPTION BY PASSWORD = '<enterStrongPasswordHere>');

GO

17

http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�

See Also

CREATE ASYMMETRIC KEY (Transact-SQL)

DROP ASYMMETRIC KEY (Transact-SQL)

SQL Server and Database Encryption Keys (Database Engine)

Encryption Hierarchy

CREATE MASTER KEY (Transact-SQL)

OPEN MASTER KEY (Transact-SQL)

Understanding Extensible Key Management (EKM)

ALTER AUTHORIZATION

Changes the ownership of a securable.
=5 Transact-SQL Syntax Conventions

Syntax

ALTER AUTHORIZATION

ON [<class_type>:] entity name

TO { SCHEMA OWNER | principal_name }
[]

<class_type> ::=

{
OBJECT | ASSEMBLY | ASYMMETRIC KEY | CERTIFICATE

| CONTRACT | TYPE | DATABASE | ENDPOINT | FULLTEXT CATALOG
| FULLTEXT STOPLIST | MESSAGE TYPE | REMOTE SERVICE BINDING
| ROLE | ROUTE | SCHEMA | SEARCH PROPERTY LIST | SERVER ROLE

| SERVICE | SYMMETRIC KEY | XML SCHEMA COLLECTION
}

Arguments

<class_type>

Is the securable class of the entity for which the owner is being changed. OBJECT is the

default.

entity_name

Is the name of the entity.

18

http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

principal_name

Is the name of the principal that will own the entity.

Remarks

ALTER AUTHORIZATION can be used to change the ownership of any entity that has an owner.

Ownership of database-contained entities can be transferred to any database-level principal.
Ownership of server-level entities can be transferred only to server-level principals.

@ Important
Beginning with SQL Server 2005, a user can own an OBJECT or TYPE that is contained by
a schema owned by another database user. This is a change of behavior from earlier
versions of SQL Server. For more information, see OBJECTPROPERTY (Transact-SQL) and
TYPEPROPERTY (Transact-SQL).

Ownership of the following schema-contained entities of type "object" can be transferred:
tables, views, functions, procedures, queues, and synonyms.

Ownership of the following entities cannot be transferred: linked servers, statistics, constraints,
rules, defaults, triggers, Service Broker queues, credentials, partition functions, partition
schemes, database master keys, service master key, and event notifications.

Ownership of members of the following securable classes cannot be transferred: server, login,
user, application role, and column.

The SCHEMA OWNER option is only valid when you are transferring ownership of a schema-
contained entity. SCHEMA OWNER will transfer ownership of the entity to the owner of the
schema in which it resides. Only entities of class OBJECT, TYPE, or XML SCHEMA COLLECTION
are schema-contained.

If the target entity is not a database and the entity is being transferred to a new owner, all
permissions on the target will be dropped.

@ caution
In SQL Server 2005, the behavior of schemas changed from the behavior in earlier
versions of SQL Server. Code that assumes that schemas are equivalent to database users
may not return correct results. Old catalog views, including sysobjects, should not be
used in a database in which any of the following DDL statements has ever been used:
CREATE SCHEMA, ALTER SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP
USER, CREATE ROLE, ALTER ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE,
DROP APPROLE, ALTER AUTHORIZATION. In a database in which any of these statements
has ever been used, you must use the new catalog views. The new catalog views take
into account the separation of principals and schemas that was introduced in SQL Server
2005. For more information about catalog views, see Catalog Views (Transact-SQL).

Also, note the following:

@ Important

19

http://msdn.microsoft.com/en-us/library/27569888-f8b5-4cec-a79f-6ea6d692b4ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc311c80-bac5-46ab-a5c8-68b1c6bbf24a(SQL.110)�
http://msdn.microsoft.com/en-us/library/13bccc2f-ed3c-4b58-abd0-ca8bf34a66b8(SQL.110)�

The only reliable way to find the owner of a object is to query the sys.objects catalog
view. The only reliable way to find the owner of a type is to use the TYPEPROPERTY

function.

Special Cases and Conditions

The following table lists special cases, exceptions, and conditions that apply to altering

authorization.

Class

Condition

DATABASE

Cannot change the owner of system
databases master, model, tempdb, the
resource database, or a database that is
used as a distribution database. The
principal must be a login. If the principal is
a Windows login without a corresponding
SQL Server login, the principal must have
CONTROL SERVER permission and TAKE
OWNERSHIP permission on the database. If
the principal is a SQL Server login, the
principal cannot be mapped to a certificate
or asymmetric key. Dependent aliases will
be mapped to the new database owner.
The DBO SID will be updated in both the
current database and in sys.databases.

OBJECT

Cannot change ownership of triggers,
constraints, rules, defaults, statistics, system
objects, queues, indexed views, or tables
with indexed views.

SCHEMA

When ownership is transferred, permissions
on schema-contained objects that do not
have explicit owners will be dropped.
Cannot change the owner of sys, dbo, or
information_schema.

TYPE

Cannot change ownership of a TYPE that
belongs to sys or information_schema.

CONTRACT, MESSAGE TYPE, or SERVICE

Cannot change ownership of system
entities.

SYMMETRIC KEY

Cannot change ownership of global
temporary keys.

20

Class Condition

CERTIFICATE or ASYMMETRIC KEY Cannot transfer ownership of these entities
to a role or group.

ENDPOINT The principal must be a login.

Permissions
Requires TAKE OWNERSHIP permission on the entity. If the new owner is not the user that is

executing this statement, also requires either, 1) IMPERSONATE permission on the new owner if
it is a user or login; or 2) if the new owner is a role, membership in the role, or ALTER permission

on the role; or 3) if the new owner is an application role, ALTER permission on the application
role.

Examples

A. Transfer ownership of a table

The following example transfers ownership of table sprockets to user MichikoOsada. The table

is located inside schema parts.

ALTER AUTHORIZATION ON OBJECT: :Parts.Sprockets TO MichikoOsada;
GO

The query could also look like the following:

ALTER AUTHORIZATION ON Parts.Sprockets TO MichikoOsada;

GO

B. Transfer ownership of a view to the schema owner

The following example transfers ownership the view pProductionview06 to the owner of the
schema that contains it. The view is located inside schema Production.

ALTER AUTHORIZATION ON OBJECT: :Production.ProductionViewO6 TO SCHEMA OWNER;
GO

C. Transfer ownership of a schema to a user

The following example transfers ownership of the schema seattleproductionll to user
SandraAlayo.

ALTER AUTHORIZATION ON SCHEMA::SeattleProductionll TO SandraAlayo;
GO

D. Transfer ownership of an endpoint to a SQL Server login

The following example transfers ownership of endpoint Cantabsalesserverl to JaePak.
Because the endpoint is a server-level securable, the endpoint can only be transferred to a
server-level principal.

21

ALTER AUTHORIZATION ON ENDPOINT::CantabSalesServerl TO JaePak;
GO

See Also

OBJECTPROPERTY (Transact-SQL)
TYPEPROPERTY (Transact-SQL)
EVENTDATA (Transact-SQL)

ALTER AVAILABILITY GROUP

Alters an existing AlwaysOn availability group in SQL Server 2012. Most ALTER AVAILABILITY
GROUP arguments are supported only on the server instance that hosts the current primary
replica. However the JOIN, FAILOVER, and FORCE_FAILOVER_ALLOW_DATA_LOSS arguments,
which can be run only on an secondary replica.

=k Transact-SQL Syntax Conventions

Syntax

ALTER AVAILABILITY GROUP group_name
{
SET (<set_option_spec>)
| ADD DATABASE database_name
| REMOVE DATABASE database_name
| ADD REPLICA ON <add_replica_spec>
| MODIFY REPLICA ON <modify_replica_spec>
| REMOVE REPLICA ON <server_instance>
| JOIN
| FAILOVER
| FORCE_FAILOVER_ALLOW_DATA_LOSS
| ADD LISTENER ‘dns_name’ (<add_listener_option>)
| MODIFY LISTENER ‘dns_name’ (<modify_listener_option>)
| RESTART LISTENER ‘dns_name’
| REMOVE LISTENER ‘dns_name’
}
[:]

<set_option_spec> ::=

http://msdn.microsoft.com/en-us/library/27569888-f8b5-4cec-a79f-6ea6d692b4ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc311c80-bac5-46ab-a5c8-68b1c6bbf24a(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE
}

| FAILURE_CONDITION_LEVEL ={1|2|3|4]|5}
| HEALTH_CHECK_TIMEOUT = milliseconds

<server_instance> ::=

{'system_name[\instance name]' | 'FCI_network_ name[\instance name]'}

<add_replica_spec>::=
<server_instance> WITH
(
ENDPOINT_URL = 'TCP://system-address:port’,
AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT },
FAILOVER_MODE = { AUTOMATIC | MANUAL }
[, <add_replica_option> [,..n]]

<add_replica_option>::=
BACKUP_PRIORITY = n
| SECONDARY_ROLE ({
ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL}
| READ_ONLY_ROUTING_URL = 'TCP://system-address:port’
1)
| PRIMARY_ROLE ({
ALLOW_CONNECTIONS = { READ_WRITE | ALL }
| READ_ONLY_ROUTING_LIST = { (“<server_instance>"[,..n]) | NONE }
1)
| SESSION_TIMEOUT = seconds

<modify_replica_spec>::=
<server_instance> WITH
(
ENDPOINT_URL = 'TCP://system-address:port’
| AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }
| FAILOVER_MODE = { AUTOMATIC | MANUAL }

23

| BACKUP_PRIORITY = n
| SECONDARY_ROLE ({
ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL}
| READ_ONLY_ROUTING_URL = 'TCP://system-address:port’
1)
| PRIMARY_ROLE ({
ALLOW_CONNECTIONS = { READ_WRITE | ALL }
| READ_ONLY_ROUTING_LIST = { (“<server_instance>"[,..n]) | NONE }
1)
| SESSION_TIMEOUT = seconds

)

<add_listener_option> ::=

{
WITH DHCP [ON (<network_subnet_option>)]

| WITH IP ({ (<ip_address_option>)}[,..n]) [, PORT = listener port]
}

<network_subnet_option> ::=

‘four_part_ipv4_address’, ‘four_part_ipv4 mask’

<ip_address_option> ::=
{
‘four_part_ipv4_address’, ‘four_part_ipv4 mask’
| ‘ipvé_address’

}

<modify_listener_option>::=
{
ADD IP (<ip_address_option>)
| PORT = listener_port
}

Arguments

group_name

Specifies the name of the new availability group. group_name must be a valid SQL Server
identifier, and it must be unique across all availability groups in the WSFC cluster.

AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE

}

Specifies a preference about how a backup job should evaluate the primary replica when
choosing where to perform backups. You can script a given backup job to take the
automated backup preference into account. It is important to understand that the preference
is not enforced by SQL Server, so it has no impact on ad-hoc backups.

Supported only on the primary replica.

The values are as follows:

PRIMARY

Specifies that the backups should always occur on the primary replica. This option is useful
if you need backup features, such as creating differential backups, that are not supported
when backup is run on a secondary replica.

SECONDARY_ONLY

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

SECONDARY

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default behavior.

NONE

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors
such as backup priority of each availability replica in combination with its operational state
and connected state.

There is no enforcement of the AUTOMATED_BACKUP_PREFERENCE setting. The
interpretation of this preference depends on the logic, if any, that you script into back jobs
for the databases in a given availability group. For more information, see Backup on
Secondary Replicas (AlwaysOn Availability Groups).

To view the automated backup preference of an existing availability group, select the
automated_backup_preference or automated_backup_preference_desc column of the
sys.availability groups catalog view.

FAILURE_CONDITION_LEVEL={1]2|3|4|5}

Specifies what failure conditions will trigger an automatic failover for this availability group.
FAILURE_CONDITION_LEVEL is set at the group level but is relevant only on availability

25

http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�

replicas that are configured for synchronous-commit availability mode (AVAILIBILITY_MODE
= SYNCHRONOUS_COMMIT). Furthermore, failure conditions can trigger an automatic
failover only if both the primary and secondary replicas are configured for automatic failover
mode (FAILOVER_MODE = AUTOMATIC) and the secondary replica is currently synchronized
with the primary replica.

Supported only on the primary replica.

The failure-condition levels (1-5) range from the least restrictive, level 1, to the most
restrictive, level 5. A given condition level encompasses all of the less restrictive levels. Thus,
the strictest condition level, 5, includes the four less restrictive condition levels (1-4), level 4
includes levels 1-3, and so forth. The following table describes the failure-condition that
corresponds to each level.

Level Failure Condition

1 Specifies that an automatic failover should
be initiated when any of the following
occurs:

e The SQL Server service is down.

e The lease of the availability group for
connecting to the WSFC cluster expires
because no ACK is received from the
server instance.

2 Specifies that an automatic failover should
be initiated when any of the following
occurs:

e The instance of SQL Server does not
connect to cluster, and the user-
specified HEALTH_CHECK_TIMEOUT
threshold of the availability group is
exceeded.

e The availability replica is in failed state.

3 Specifies that an automatic failover should
be initiated on critical SQL Server internal
errors, such as orphaned spinlocks, serious
write-access violations, or too much
dumping.

This is the default behavior.

4 Specifies that an automatic failover should
be initiated on moderate SQL Server
internal errors, such as a persistent out-of-

26

memory condition in the SQL Server
internal resource pool.

be initiated on any qualified failure
conditions, including:

e Exhaustion of SQL Engine worker-
threads.

e Detection of an unsolvable deadlock.

5 Specifies that an automatic failover should

nNote
Lack of response by an instance of SQL Server to client requests is not relevant to availability groups.

The FAILURE_CONDITION_LEVEL and HEALTH_CHECK_TIMEOUT values, define a flexible
failover policy for a given group. This flexible failover policy provides you with granular
control over what conditions must cause an automatic failover. For more information, see
Flexible Failover Policy for Automatic Failover of an Availability Group (SQL

Server).

HEALTH_CHECK_TIMEOUT = milliseconds
Specifies the wait time (in milliseconds) for the sp server diagnostics system stored
procedure to return server-health information before WSFC cluster assumes that the server
instance is slow or hung. HEALTH_CHECK_TIMEOUT is set at the group level but is relevant
only on availability replicas that are configured for synchronous-commit availability mode
with automatic failover (AVAILIBILITY_MODE = SYNCHRONOUS_COMMIT). Furthermore, a
health-check timeout can trigger an automatic failover only if both the primary and

secondary replicas are configured for automatic failover mode (FAILOVER_MODE =
AUTOMATIC) and the secondary replica is currently synchronized with the primary replica.

The default HEALTH_CHECK_TIMEOUT value is 30000 milliseconds (30 seconds). The

minimum value is 15000 milliseconds (15 seconds), and the maximum value is 4294967295

milliseconds.

Supported only on the primary replica.

@ Important
sp_server_diagnostics does not perform health checks at the database level.

ADD DATABASE database_name

Specifies a list of one or more user databases that you want to add to the availability group.
These databases must reside on the instance of SQL Server that hosts the current primary
replica. You can specify multiple databases for an availability group, but each database can
belong to only one availability group. For information about the type of databases that an
availability group can support, see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Availability Groups (SQL Server). To find out

27

http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�

which local databases already belong to an availability group, see the replica_id column in

the sys.databases catalog view.
Supported only on the primary replica.

After you have created the availability group, you will need connect to each server instance that hosts
a secondary replica and then prepare each secondary database and join it to the availability group. For
more information, see Start Data Movement on an AlwaysOn Secondary Database (SQL

Server).
REMOVE DATABASE database_name

Removes the specified primary database and the corresponding secondary databases from
the availability group. Supported only on the primary replica.

For information about the recommended follow up after removing an availability database
from an availability group, see Remove a Primary Database from an Availability
Group (SQL Server).

ADD REPLICA ON

Specifies from one to four SQL server instances to host secondary replicas in an availability
group. Each replica is specified by its server instance address followed by a WITH (...) clause.

Supported only on the primary replica.
You need to join every new secondary replica to the availability group. For more information,
see the description of the JOIN option, later in this section.

<server_instance>

Specifies the address of the instance of SQL Server that is the host for an replica. The address
format depends on whether the instance is the default instance or a named instance and
whether it is a standalone instance or a failover cluster instance (FCI). The syntax is as follows:

{ 'system_name[\instance_name]' | 'FCL_network_name[\instance_name]' }
The components of this address are as follows:
system_name

Is the NetBIOS name of the computer system on which the target instance of SQL Server
resides. This computer must be a WSFC node.

FCI_network_name

Is the network name that is used to access a SQL Server failover cluster. Use this if the
server instance participates as a SQL Server failover partner. Executing SELECT
@ @SERVERNAME on an FCI server instance returns its entire

'FCI_network_name[\instance_name]' string (which is the full replica name).

instance_name

Is the name of an instance of a SQL Server that is hosted by system_name or
FCI_network_name and that has HADR service is enabled. For a default server instance,

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�

instance_name is optional. The instance name is case insensitive. On a stand-alone server
instance, this value name is the same as the value returned by executing SELECT

@@SERVERNAME.

Is a separator used only when specifying instance_name, in order to separate it from
system_name or FCI_network_name.

For information about the prerequisites for WSFC nodes and server instances, see
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability
Groups (SOL Server).

ENDPOINT_URL = 'TCP://system-address:port’

Specifies the URL path for the database mirroring endpoint on the instance of SQL
Server that will host the availability replica that you are adding or modifying.

ENDPOINT_URL is required in the ADD REPLICA ON clause and optional in the MODIFY

REPLICA ON clause. For more information, see Specify the Endpoint URL When
Adding or Modifying an Availability Replica.

"TCP://system-address:port’
Specifies a URL for specifying an endpoint URL or read-only routing URL. The URL parameters
are as follows:

system-address

Is a string, such as a system name, a fully qualified domain name, or an IP address, that
unambiguously identifies the destination computer system.

port

Is a port number that is associated with the mirroring endpoint of the server instance (for
the ENDPOINT_URL option) or the port number used by the Database Engine of the server
instance (for the READ_ONLY_ROUTING_URL option).

AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }
Specifies whether the primary replica has to wait for the secondary replica to acknowledge
the hardening (writing) of the log records to disk before the primary replica can commit the
transaction on a given primary database. The transactions on different databases on the
same primary replica can commit independently.

SYNCHRONOUS_COMMIT

Specifies that the primary replica will wait to commit transactions until they have been
hardened on this secondary replica (synchronous-commit mode). You can specify
SYNCHRONOUS_COMMIT for up to three replicas, including the primary replica.

ASYNCHRONOUS_COMMIT

Specifies that the primary replica commits transactions without waiting for this secondary
replica to harden the log (synchronous-commit availability mode). You can specify

http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/39332dc5-678e-4650-9217-6aa3cdc41635(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�

ASYNCHRONOUS_COMMIT for up to five availability replicas, including the primary replica.

AVAILABILITY_MODE is required in the ADD REPLICA ON clause and optional in the MODIFY
REPLICA ON clause. For more information, see Availability Modes (AlwaysOn
Availability Groups).

FAILOVER_MODE = { AUTOMATIC | MANUAL }
Specifies the failover mode of the availability replica that you are defining.

AUTOMATIC

Enables automatic failover. AUTOMATIC is supported only if you also specify
AVAILABILITY_MODE = SYNCHRONOUS_COMMIT. You can specify AUTOMATIC for two
availability replicas, including the primary replica.

SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability groups,
so any availability replica that is hosted by an FCI can only be configured for manual failover.

MANUAL

Enables manual failover or forced manual failover (forced failover) by the database

administrator.

FAILOVER_MODE is required in the ADD REPLICA ON clause and optional in the MODIFY
REPLICA ON clause. Two types of manual failover exist, manual failover without data loss and
forced failover (with possible data loss), which are supported under different conditions. For
more information, see Failover Modes (AlwaysOn Availability Groups).

BACKUP_PRIORITY = n

Specifies your priority for performing backups on this replica relative to the other replicas in

the same availability group. The value is an integer in the range of 0..100. These values have

the following meanings:

e 1.100 indicates that the availability replica could be chosen for performing backups. 1
indicates the lowest priority, and 100 indicates the highest priority. If BACKUP_PRIORITY
= 1, the availability replica would be chosen for performing backups only if no higher
priority availability replicas are currently available.

e 0indicates that this availability replica will never be chosen for performing backups. This
is useful, for example, for a remote availability replica to which you never want backups
to fail over.

For more information, see Backup on Secondary Replicas (AlwaysOn Availability

Groups).

SECONDARY_ROLE (...)

Specifies role-specific settings that will take effect if this availability replica currently owns the

secondary role (that is, whenever it is a secondary replica). Within the parentheses, specify
either or both secondary-role options. If you specify both, use a comma-separated list.

http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�
http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�
http://msdn.microsoft.com/en-us/library/378d2d63-50b9-420b-bafb-d375543fda17(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�

The secondary role options are as follows:
ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL}

Specifies whether the databases of a given availability replica that is performing the
secondary role (that is, is acting as a secondary replica) can accept connections from
clients, one of:

NO

No user connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default behavior.

READ_ONLY

Only connections are allowed to the databases in the secondary replica where the
Application Intent property is set to ReadOnly. For more information about this
property, see Using Connection String Keywords with SQL Server Native
Client.

ALL

All connections are allowed to the databases in the secondary replica for read-only
access.

For more information, see Read-Only Access to Secondary Replicas.

READ_ONLY_ROUTING_URL = 'TCP://system-address:port’
Specifies the URL to be used for routing read-intent connection requests to this availability

replica. This is the URL on which the SQL Server Database Engine listens. Typically, the
default instance of the SQL Server Database Engine listens on TCP port 1433.

For a named instance, you can obtain the port number by querying the port and
type_desc columns of the sys.dm tcp listener states dynamic management view. The
server instance uses the Transact-SQL listener (type_desc = 'TSQL’).

For a named instance of SQL Server, the Transact-SQL listener should be configured to use a specific
port. For more information, see Configure a Server to Listen on a Specific TCP Port (SQL
Server Configuration Manager).

PRIMARY_ROLE (...)
Specifies role-specific settings that will take effect if this availability replica currently owns the
primary role (that is, whenever it is the primary replica). Within the parentheses, specify
either or both primary-role options. If you specify both, use a comma-separated list.

The primary role options are as follows:

ALLOW_CONNECTIONS = { READ_WRITE | ALL}
Specifies the type of connection that the databases of a given availability replica that is
performing the primary role (that is, is acting as a primary replica) can accept from clients,
one of:

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/78f3f81a-066a-4fff-b023-7725ff874fdf(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�

READ_WRITE

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the Application
Intent connection property is not set, the connection is allowed. For more information
about Application Intent connection property, see Using Connection String
Keywords with SQL Server Native Client.

ALL

All connections are allowed to the databases in the primary replica. This is the default
behavior.

READ_ONLY_ROUTING_LIST = { (‘<server_instance>'[,..n]) | NONE }

Specifies a comma-separated list of server instances that host availability replicas for this
availability group that meet the following requirements when running under the secondary
role:

e Be configured to allow all connections or read-only connections (see the
ALLOW_CONNECTIONS argument of the SECONDARY_ROLE option, above).
e Have their read-only routing URL defined (see the READ_ONLY_ROUTING_URL
argument of the SECONDARY_ROLE option, above).
The READ_ONLY_ROUTING_LIST values are as follows:
<server._instance>
Specifies the address of the instance of SQL Server that is the host for an availability
replica that is a readable secondary replica when running under the secondary role.

Use a comma-separated list to specify all of the server instances that might host a
readable secondary replica. Read-only routing will follow the order in which server
instances are specified in the list. If you include a replica's host server instance on the
replica's read-only routing list, placing this server instance at the end of the list is
typically a good practice, so that read-intent connections go to a secondary replica, if
one is available.

NONE

Specifies that when this availability replica is the primary replica, read-only routing will
not be supported. This is the default behavior. When used with MODIFY REPLICA ON,
this value disables an existing list, if any.

SESSION_TIMEOUT = seconds

Specifies the session-timeout period in seconds. If you do not specify this option, by default,
the time period is 10 seconds. The minimum value is 5 seconds.

4 Important
We recommend that you keep the time-out period at 10 seconds or greater.

For more information about the session-timeout period, see Overview of AlwaysOn
Availability Groups (SQL Server).

32

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�

MODIFY REPLICA ON

Modifies any of the replicas of the availability group. The list of replicas to be modified
contains the server instance address and a WITH (...) clause for each replica.

Supported only on the primary replica.

REMOVE REPLICA ON

Removes the specified secondary replica from the availability group. The current primary
replica cannot be removed from an availability group. On being removed, the replica stops
receiving data. Its secondary databases are removed from the availability group and enter the
RESTORING state.

Supported only on the primary replica.

If you remove a replica while it is unavailable or failed, when it comes back online it will discover that it

no longer belongs the availability group.

JOIN
Causes the local server instance to host a secondary replica in the specified availability group.
Supported only on a secondary replica that has not yet been joined to the availability group.
For more information, see Join a Secondary Replica to an Availability Group (SQL

Server).
FAILOVER

Initiates a manual failover of the availability group without data loss to the secondary replica
to which you are connected. The secondary replica will take over the primary role and recover
its copy of each database and bring them online as the new primary databases. The former
primary replica concurrently transitions to the secondary role, and its databases become
secondary databases and are immediately suspended. Potentially, these roles can be
switched back and forth by a series of failures.

A failover command returns as soon as the target secondary replica has accepted the command.
However, database recovery occurs asynchronously after the availability group has finished failing
over.

Supported only on a synchronous-commit secondary replica that is currently synchronized
with the primary replica. Note that for a secondary replica to be synchronized the primary
replica must also be running in synchronous-commit mode.

For information about the limitations, prerequisites and recommendations for a performing a
planned manual failover, see Perform a Planned Manual Failover of an Availability
Group (SQL Server).

33

http://msdn.microsoft.com/en-us/library/e5bd2489-097a-490e-8ea1-34fe48378ad1(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5bd2489-097a-490e-8ea1-34fe48378ad1(SQL.110)�
http://msdn.microsoft.com/en-us/library/419f655d-3f9a-4e7d-90b9-f0bab47b3178(SQL.110)�
http://msdn.microsoft.com/en-us/library/419f655d-3f9a-4e7d-90b9-f0bab47b3178(SQL.110)�

FORCE_FAILOVER_ALLOW_DATA_LOSS

0 Caution

Forcing service, which might involve some data loss, is strictly a disaster recovery method. Therefore,
We strongly recommend that you force failover only if the primary replica is no longer running, you
are willing to risk losing data, and you must restore service to the availability group immediately.

Forces failover of the availability group, with possible data loss, to the secondary replica to
which you are connected. The secondary replica will take over the primary role and recover
its copy of each database and bring them online as the new primary databases. On any
remaining secondary replicas, every secondary database is suspended until manually
resumed. When the former primary replica becomes available, it will switch to the secondary
role, and its databases will become suspended secondary databases.

Supported only on a secondary replica.

A failover command returns as soon as the target secondary replica has accepted the command.
However, database recovery occurs asynchronously after the availability group has finished failing
over.

For information about the limitations, prerequisites and recommendations for forcing failover

and the effect of a forced failover on the former primary databases, see Perform a Forced
Manual Failover of an Availability Group (SQL Server).

ADD LISTENER ‘dns_name’ (<add_listener_option>)

Defines a new availability group listener for this availability group. Supported only on the

primary replica.

4 Important
e Before you create your first listener, we strongly recommend that you read
Prerequisites, Restrictions, and Recommendations for AlwaysOn
Client Connectivity (SQL Server).

e After you create a listener for a given availability group, we strongly recommend
that you do the following:

dns_name
Specifies the DNS host name of the availability group listener. The DNS name of the listener

must be unique in the domain and in NetBIOS.

dns_name is a string value. This name can contain only alphanumeric characters, dashes (-),
and hyphens (), in any order. DNS host names are case insensitive. The maximum length is
63 characters.

We recommend that you specify a meaningful string. For example, for an availability group
named AG1, a meaningful DNS host name would be agl-1listener.

4 Important
NetBIOS recognizes only the first 15 chars in the dns_name. If you have two WSFC clusters that are

34

http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/222288fe-ffc0-4567-b624-5d91485d70f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/222288fe-ffc0-4567-b624-5d91485d70f0(SQL.110)�

controlled by the same Active Directory and you try to create availability group listeners in both of

clusters using names with more than 15 characters and an identical 15 character prefix, you will get an
error reporting that the Virtual Network Name resource could not be brought online. For information

about prefix naming rules for DNS names, see Assigning Domain Names.

<add_listener_option>
ADD LISTENER takes one of the following options:
WITH DHCP [ON { (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) }]

Specifies that the availability group listener will use the Dynamic Host Configuration
Protocol (DHCP). Optionally, use the ON clause to identify the network on which this
listener will be created. DHCP is limited to a single subnet that is used for every server
instances that hosts an availability replica in the availability group.

4 Important
We do not recommend DHCP in production environment. If there is a down time and the DHCP IP
lease expires, extra time is required to register the new DHCP network IP address that is associated
with the listener DNS name and impact the client connectivity. However, DHCP is good for setting
up your development and testing environment to verify basic functions of availability groups and

for integration with your applications.
For example:

WITH DHCP ON ('10.120.19.0','255.255.254.0")

WITH IP ({ (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) | (‘ipv6_address’) } [,
..n]) [, PORT = listener_port]

Specifies that, instead of using DHCP, the availability group listener will use one or more
static IP addresses. To create an availability group across multiple subnets, each subnet
requires one static IP address in the listener configuration. For a given subnet, the static IP
address can be either an IPv4 address or an IPv6 address. Contact your network
administrator to get a static IP address for each subnet that will host an availability replica
for the new availability group.

For example:

WITH IP (('10.120.19.155','255.255.254.0"))

four_part_ipv4_address
Specifies an IPv4 four-part address for an availability group listener. For example,
10.120.19.155.

four_part_ipv4_mask
Specifies an IPv4 four-part mask for an availability group listener. For example,
255.255.254.0.

ipv6_address

Specifies an IPv6 address for an availability group listener. For example,
2001::4898:23:1002:20f:1fff:feff:b3a3.

35

http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�

PORT = listener_port

Specifies the port number—listener_port—to be used by an availability group listener that is
specified by a WITH IP clause. PORT is optional.

The default port number, 1433, is supported. However, if you have security concerns, we
recommend using a different port number.

For example: WITH IP (('2001::4898:23:1002:20f:1fff:feff:b3a3")
) , PORT = 7777

MODIFY LISTENER ‘dns_name’ (<modify listener_option>)
Modifies an existing availability group listener for this availability group. Supported only on
the primary replica.

<modify listener_option>
MODIFY LISTENER takes one of the following options:

ADD IP { (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) | (‘dns_nameipv6_address’
)}

Adds the specified IP address to the availability group listener specified by dns_name.
PORT = listener_port

See the description of this argument earlier in this section.

RESTART LISTENER ‘dns_name’
Restarts the listener that is associated with the specified DNS name. Supported only on the
primary replica.

REMOVE LISTENER ‘dns_name’

Removes the listener that is associated with the specified DNS name. Supported only on the
primary replica.

.-r?

Prerequisites and Restrictions

For information about prerequisites and restrictions on availability replicas and on their host
server instances and computers, see Prerequisites, Restrictions, and Recommendations for
AlwaysOn Availability Groups (SQL Server).

For information about restrictions on the AVAILABILITY GROUP Transact-SQL statements, see
Overview of "HADR" Transact-SOL Statements (SQL Server).

Security

Permissions

Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Examples

36

http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/184d0a81-2259-4db9-9d0d-01aac0b502c8(SQL.110)�

e A Joining a secondary replica to an availability group

e B. Forcing failover of an availability group

A. Joining a secondary replica to an availability group

The following example, joins a secondary replica to which you are connected to the AccountsaG
availability group.

ALTER AVAILABILITY GROUP AccountsAG JOIN;
GO

B. Forcing failover of an availability group

The following example forces the accountsac availability group to fail over to the secondary
replica to which you are connected.

ALTER AVAILABILITY GROUP AccountsAG FORCE FAILOVER ALLOW DATA LOSS;

GO
»

See Also

CREATE AVAILABILITY GROUP (Transact-SQL)
ALTER DATABASE SET HADR (Transact-SQL)
DROP AVAILABILITY GROUP (Transact-SQL)
sys.availability replicas (Transact-SQL)

sys.availability groups (Transact-SQL)

Troubleshooting AlwaysOn Availability Groups Configuration (SQL Server)

Overview of AlwaysOn Availability Groups (SQL Server)

Client Connectivity and Application Failover (AlwaysOn Availability Groups)

ALTER BROKER PRIORITY

Changes the properties of a Service Broker conversation priority.
=5 Transact-SQL Syntax Conventions

Syntax

ALTER BROKER PRIORITY ConversationPriorityName

FOR CONVERSATION

{ SET ([CONTRACT_NAME = {ContractName | ANY }]
[[,] LOCAL_SERVICE_NAME = {LocalServiceName | ANY }]
[[,] REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY }]
[[,]PRIORITY_LEVEL = { PriorityValue | DEFAULT }]

37

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c222f98-7392-4faf-b7ad-5fb60ffa237e(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/76fb3eca-6b08-4610-8d79-64019dd56c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

Arguments

ConversationPriorityName
Specifies the name of the conversation priority to be changed. The name must refer to a
conversation priority in the current database.

SET
Specifies the criteria for determining if the conversation priority applies to a conversation.
SET is required and must contain at least one criterion: CONTRACT_NAME,
LOCAL_SERVICE_NAME, REMOTE_SERVICE_NAME, or PRIORITY_LEVEL.

CONTRACT_NAME = {ContractName | ANY}

Specifies the name of a contract to be used as a criterion for determining if the conversation
priority applies to a conversation. ContractName is a Database Engine identifier, and must
specify the name of a contract in the current database.

ContractName
Specifies that the conversation priority can be applied only to conversations where the
BEGIN DIALOG statement that started the conversation specified ON CONTRACT
ContractName.

ANY
Specifies that the conversation priority can be applied to any conversation, regardless of

which contract it uses.

If CONTRACT_NAME is not specified, the contract property of the conversation priority is not
changed.
LOCAL_SERVICE_ NAME = {LocalServiceName | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

LocalServiceName is a Database Engine identifier and must specify the name of a service in
the current database.

LocalServiceName
Specifies that the conversation priority can be applied to the following:

e Any initiator conversation endpoint whose initiator service name matches
LocalServiceName.

e Any target conversation endpoint whose target service name matches
LocalServiceName.

38

ANY
e Specifies that the conversation priority can be applied to any conversation endpoint,

regardless of the name of the local service used by the endpoint.

If LOCAL_SERVICE_NAME is not specified, the local service property of the conversation
priority is not changed.
REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

RemoteServiceName is a literal of type nvarchar(256). Service Broker uses a byte-by-byte
comparison to match the RemoteServiceName string. The comparison is case-sensitive and
does not consider the current collation. The target service can be in the current instance of
the Database Engine, or a remote instance of the Database Engine.

'RemoteServiceName’
Specifies the conversation priority be assigned to the following:

e Any initiator conversation endpoint whose associated target service name matches
RemoteServiceName.

e Any target conversation endpoint whose associated initiator service name matches
RemoteServiceName.
ANY
Specifies that the conversation priority applies to any conversation endpoint, regardless of

the name of the remote service associated with the endpoint.

If REMOTE_SERVICE_NAME is not specified, the remote service property of the conversation
priority is not changed.

PRIORITY_LEVEL = { PriorityValue | DEFAULT }

Specifies the priority level to assign any conversation endpoint that use the contracts and
services that are specified in the conversation priority. PriorityValue must be an integer literal
from 1 (lowest priority) to 10 (highest priority).

If PRIORITY_LEVEL is not specified, the priority level property of the conversation priority is
not changed.

Remarks

No properties that are changed by ALTER BROKER PRIORITY are applied to existing
conversations. The existing conversations continue with the priority that was assigned when they
were started.

For more information, see CREATE BROKER PRIORITY (Transact-SQL).

Permissions

39

Permission for creating a conversation priority defaults to members of the db_ddladmin or
db_owner fixed database roles, and to the sysadmin fixed server role. Requires ALTER
permission on the database.

Examples

A. Changing only the priority level of an existing conversation priority.

Changes the priority level, but does not change the contract, local service, or remote service
properties.

ALTER BROKER PRIORITY SimpleContractDefaultPriority
FOR CONVERSATION

SET (PRIORITY LEVEL = 3);

B. Changing all of the properties of an existing conversation priority.
Changes the priority level, contract, local service, and remote service properties.
ALTER BROKER PRIORITY SimpleContractPriority
FOR CONVERSATION
SET (CONTRACT NAME = SimpleContractB,
LOCAL SERVICE NAME = TargetServiceB,
REMOTE SERVICE NAME = N'InitiatorServiceB',

PRIORITY LEVEL = 8);

See Also

CREATE BROKER PRIORITY (Transact-SQL)
DROP BROKER PRIORITY (Transact-SQL)
sys.conversation priorities (Transact-SQL)

ALTER CERTIFICATE

Changes the private key used to encrypt a certificate, or adds one if none is present. Changes

the availability of a certificate to Service Broker.
=k Transact-SQL Syntax Conventions

Syntax

ALTER CERTIFICATE certificate_name
REMOVE PRIVATE KEY

|
WITH PRIVATE KEY (<private_key_spec> [,...])

40

http://msdn.microsoft.com/en-us/library/7cbb9171-3310-4aae-8458-755c882d6462(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

WITH ACTIVE FOR BEGIN_DIALOG = [ON | OFF]

<private_key spec> ::=
FILE = 'path_to_private key'
|
DECRYPTION BY PASSWORD = 'key_password'

|
ENCRYPTION BY PASSWORD = 'password’

Arguments

certificate_name

Is the unique name by which the certificate is known in database.

FILE = 'path_to_private_key’
Specifies the complete path, including file name, to the private key. This parameter can be a
local path or a UNC path to a network location. This file will be accessed within the security
context of the SQL Server service account. When you use this option, you must make sure
that the service account has access to the specified file.

DECRYPTION BY PASSWORD = 'key_password'
Specifies the password that is required to decrypt the private key.

ENCRYPTION BY PASSWORD = 'password’

Specifies the password used to encrypt the private key of the certificate in the database.
password must meet the Windows password policy requirements of the computer that is
running the instance of SQL Server. For more information, see EVENTDATA (Transact-

S0L).

REMOVE PRIVATE KEY

Specifies that the private key should no longer be maintained inside the database.

ACTIVE FOR BEGIN_DIALOG = { ON | OFF }

Makes the certificate available to the initiator of a Service Broker dialog conversation.

Remarks
The private key must correspond to the public key specified by certificate_name.

The DECRYPTION BY PASSWORD clause can be omitted if the password in the file is protected
with a null password.

When the private key of a certificate that already exists in the database is imported from a file,
the private key will be automatically protected by the database master key. To protect the
private key with a password, use the ENCRYPTION BY PASSWORD phrase.

41

http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�

The REMOVE PRIVATE KEY option will delete the private key of the certificate from the database.
You can do this when the certificate will be used to verify signatures or in Service Broker
scenarios that do not require a private key. Do not remove the private key of a certificate that
protects a symmetric key.

You do not have to specify a decryption password when the private key is encrypted by using
the database master key.

@ Important
Always make an archival copy of a private key before removing it from a database. For
more information, see BACKUP CERTIFICATE (Transact-SQL).

The WITH PRIVATE KEY option is not available in a contained database.

Permissions
Requires ALTER permission on the certificate.

Examples

A. Changing the password of a certificate

ALTER CERTIFICATE Shipping04
WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'pGFS$5DGvbd2439587y',
ENCRYPTION BY PASSWORD = '4-329578thlkajdshglXCSgf');

GO

B. Changing the password that is used to encrypt the private key

ALTER CERTIFICATE Shippingll
WITH PRIVATE KEY (ENCRYPTION BY PASSWORD = '34958tosdgfkh##38"',
DECRYPTION BY PASSWORD = '95hkjdskghFDGGG4%"') ;

GO

C. Importing a private key for a certificate that is already present in the database
ALTER CERTIFICATE Shippingl3
WITH PRIVATE KEY (FILE = 'c:\\importedkeys\Shippingl3',

DECRYPTION BY PASSWORD

'GDFLK18""GGG4000%") ;
GO
D. Changing the protection of the private key from a password to the database
master key
ALTER CERTIFICATE Shippingl5
WITH PRIVATE KEY (DECRYPTION BY PASSWORD = '95hk000eEnvijkjy#F$');
GO

42

http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�

See Also

CREATE CERTIFICATE (Transact-SQL)
DROP CERTIFICATE (Transact-SQL)
BACKUP CERTIFICATE (Transact-SQL)
Encryption Hierarchy

EVENTDATA (Transact-SQL)

ALTER CREDENTIAL

Changes the properties of a credential.
.= Transact-SQL Syntax Conventions

Syntax

ALTER CREDENTIAL credential name WITH IDENTITY = 'identity name'
[, SECRET = 'secret']

Arguments
credential_name

Specifies the name of the credential that is being altered.

IDENTITY = 'identity_name’

Specifies the name of the account to be used when connecting outside the server.

SECRET = 'secret’

Specifies the secret required for outgoing authentication. secret is optional.

Remarks

When a credential is changed, the values of both identity_name and secret are reset. If the
optional SECRET argument is not specified, the value of the stored secret will be set to NULL.

The secret is encrypted by using the service master key. If the service master key is regenerated,
the secret is reencrypted by using the new service master key.

Information about credentials is visible in the sys.credentials catalog view.

Permissions

Requires ALTER ANY CREDENTIAL permission. If the credential is a system credential, requires
CONTROL SERVER permission.

Examples

A. Changing the password of a credential

43

http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

The following example changes the secret stored in a credential called saddles. The credential
contains the Windows login rRettigi and its password. The new password is added to the
credential using the SECRET clause.

ALTER CREDENTIAL Saddles WITH IDENTITY = 'RettigB',
SECRET = 'sdrlk8$40-dksli87nNN8';
GO

B. Removing the password from a credential

The following example removes the password from a credential named Frames. The credential
contains Windows login aboulrus8 and a password. After the statement is executed, the
credential will have a NULL password because the SECRET option is not specified.

ALTER CREDENTIAL Frames WITH IDENTITY = 'Aboulrus8';

GO

See Also

sys.credentials (Transact-SQL)
CREATE CREDENTIAL (Transact-SQL)
DROP CREDENTIAL (Transact-SQL)
CREATE LOGIN (Transact-SQL)
sys.credentials (Transact-SQL)

ALTER CRYPTOGRAPHIC PROVIDER

Alters a cryptographic provider within SQL Server from an Extensible Key Management (EKM)
provider.

=5 Transact-SQL Syntax Conventions

Syntax

ALTER CRYPTOGRAPHIC PROVIDER provider_name
[FROM FILE = path_of DLL]
ENABLE | DISABLE

Arguments

provider_name

Name of the Extensible Key Management provider.

Path_of DLL
Path of the .dll file that implements the SQL Server Extensible Key Management interface.

44

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea48cf80-904a-4273-a950-6d35b1b0a1b6(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

ENABLE | DISABLE

Enables or disables a provider.

Remarks

If the provider changes the .dll file that is used to implement Extensible Key Management in SQL
Server, you must use the ALTER CRYPTOGRAPHIC PROVIDER statement.

When the .dll file path is updated by using the ALTER CRYPTOGRAPHIC PROVIDER statement,
SQL Server performs the following actions:

e Disables the provider.

e Verifies the DLL signature and ensures that the .dll file has the same GUID as the one
recorded in the catalog.

e Updates the DLL version in the catalog.

When an EKM provider is set to DISABLE, any attempts on new connections to use the provider
with encryption statements will fail.

To disable a provider, all sessions that use the provider must be terminated.

When an EKM provider dIl does not implement all of the necessary methods, ALTER
CRYPTOGRAPHIC PROVIDER can return error 33085:

One or more methods cannot be found in cryptographic provider library

'$S.*x1s'.

When the header file used to create the EKM provider dll is out of date, ALTER CRYPTOGRAPHIC
PROVIDER can return error 33032:

SQL Crypto API version '%02d.%02d' implemented by provider is not supported.
Supported version is '%02d.%02d'.

Permissions

Requires CONTROL permission on the cryptographic provider.

Examples

The following example alters a cryptographic provider, called securityProvider in SQL
Server, to a newer version of a .dll file. This new version is

named c:\SecurityProvider\SecurityProvider v2.d11l and is installed on the server. The
provider's certificate must be installed on the server.

/* First, disable the provider to perform the upgrade.
This will terminate all open cryptographic sessions */
ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider

DISABLE;

GO

/* Upgrade the provider .dll file. The GUID must the same

45

as the previous version, but the version can be different. */
ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider
FROM FILE = 'c:\SecurityProvider\SecurityProvider v2.dll';

GO

/* Enable the upgraded provider. */
ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider
ENABLE;

GO

See Also

Understanding Extensible Key Management (EKM)
CREATE CRYPTOGRAPHIC PROVIDER (Transact-SQL)
DROP CRYPTOGRAPHIC PROVIDER (Transact-SQL)
CREATE SYMMETRIC KEY (Transact-SQL)

ALTER DATABASE

Modifies a database, or the files and filegroups associated with the database. Adds or removes
files and filegroups from a database, changes the attributes of a database or its files and
filegroups, changes the database collation, and sets database options. Database snapshots
cannot be modified. To modify database options associated with replication, use

sp replicationdboption.

Because of its length, the ALTER DATABASE syntax is separated into the following topics:
ALTER DATABASE

The current topic provides the syntax for changing the name and the collation of a database.

ALTER DATABASE File and Filegroup Options

Provides the syntax for adding and removing files and filegroups from a database, and for

changing the attributes of the files and filegroups.

ALTER DATABASE SET Options

Provides the syntax for changing the attributes of a database by using the SET options of
ALTER DATABASE.

ALTER DATABASE Database Mirroring

Provides the syntax for the SET options of ALTER DATABASE that are related to database
mirroring.

ALTER DATABASE SET HADR
Provides the syntax for the AlwaysOn Availability Groups options of ALTER DATABASE for

46

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/d021864e-3f21-4d1a-89df-6c1086f753bf(SQL.110)�

configuring a secondary database on a secondary replica of an AlwaysOn availability group.

ALTER DATABASE Compatibility Level

Provides the syntax for the SET options of ALTER DATABASE that are related to database
compatibility levels.

=5 Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE { database_name | CURRENT }
{
MODIFY NAME = new_database_name

| COLLATE collation_name

| <file_and_filegroup_options>

| <set_database_options>
}
(]

<file_and_filegroup_options >::
<add_or_modify files>::=
<filespec>::=
<add_or_modify_filegroups>::

<filegroup_updatability_option>::=

<set_database_options>::=
<optionspec>::=
<auto_option> ::=
<change_tracking_option> ::=
<cursor_option> ::=
<database_mirroring_option> ::=
<date_correlation_optimization_option> ::=
<db_encryption_option> ::=
<db_state_option> ::=
<db_update_option> ::=
<db_user_access_option> ::=
<external_access_option> ::=
<FILESTREAM_options> ::=

47

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<HADR _options> ::=
<parameterization_option> ::=
<recovery_option> ::=
<service_broker_option> ::=
<snapshot_option> ::=
<sql_option> ::=
<termination> ::=

Arguments
database_name

Is the name of the database to be modified.

This option is not available in a Contained Database.

CURRENT

Designates that the current database in use should be altered.

CONTAINMENT
Specifies the containment status of the database. OFF = non-contained database. PARTIAL =
partially contained database.

MODIFY NAME = new_database_name

Renames the database with the name specified as new_database_name.

COLLATE collation_name

Specifies the collation for the database. collation_name can be either a Windows collation
name or a SQL collation name. If not specified, the database is assigned the collation of the
instance of SQL Server.

For more information about the Windows and SQL collation names, see COLLATE

(Transact-SQL).
<file_and_filegroup_options >::=
For more information, see ALTER DATABASE File and Filegroup Options (Transact-SQL).
<set_database_options >::=

For more information, see ALTER DATABASE SET Options (Transact-SQL), ALTER DATABASE
Database Mirroring (Transact-SOL), ALTER DATABASE SET HADR (Transact-SQL), and ALTER
DATABASE Compatibility Level (Transact-SQL).

Remarks
To remove a database, use DROP DATABASE.
To decrease the size of a database, use DBCC SHRINKDATABASE.

48

http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc976afd-1edb-4341-bf41-c4a42a69772b(SQL.110)�

The ALTER DATABASE statement must run in autocommit mode (the default transaction
management mode) and is not allowed in an explicit or implicit transaction.

In SQL Server 2005 or later, the state of a database file (for example, online or offline), is
maintained independently from the state of the database. For more information, see File States.
The state of the files within a filegroup determines the availability of the whole filegroup. For a
filegroup to be available, all files within the filegroup must be online. If a filegroup is offline, any
try to access the filegroup by an SQL statement will fail with an error. When you build query
plans for SELECT statements, the query optimizer avoids nonclustered indexes and indexed
views that reside in offline filegroups. This enables these statements to succeed. However, if the
offline filegroup contains the heap or clustered index of the target table, the SELECT statements
fail. Additionally, any INSERT, UPDATE, or DELETE statement that modifies a table with any index
in an offline filegroup will fail.

When a database is in the RESTORING state, most ALTER DATABASE statements will fail. The
exception is setting database mirroring options. A database may be in the RESTORING state
during an active restore operation or when a restore operation of a database or log file fails
because of a corrupted backup file.

The plan cache for the instance of SQL Server is cleared by setting one of the following options:

OFFLINE READ_WRITE

ONLINE MODIFY FILEGROUP DEFAULT
MODIFY_NAME MODIFY FILEGROUP READ_WRITE
COLLATE MODIFY FILEGROUP READ_ONLY
READ_ONLY

Clearing the plan cache causes a recompilation of all subsequent execution plans and can cause
a sudden, temporary decrease in query performance. For each cleared cachestore in the plan
cache, the SQL Server error log contains the following informational message: "SQL Server has
encountered %d occurrence(s) of cachestore flush for the '%s' cachestore (part of plan cache)
due to some database maintenance or reconfigure operations". This message is logged every
five minutes as long as the cache is flushed within that time interval.

Changing the Database Collation

Before you apply a different collation to a database, make sure that the following conditions are
in place:

1. You are the only one currently using the database.
2. No schema-bound object depends on the collation of the database.

49

http://msdn.microsoft.com/en-us/library/b426474d-8954-4df0-b78b-887becfbe8d6(SQL.110)�

If the following objects, which depend on the database collation, exist in the database, the
ALTER DATABASE database_name COLLATE statement will fail. SQL Server will return an
error message for each object blocking the ALTER action:

e User-defined functions and views created with SCHEMABINDING.
e Computed columns.
e CHECK constraints.

e Table-valued functions that return tables with character columns with collations inherited
from the default database collation.

Dependency information for non-schema-bound entities is automatically updated when the
database collation is changed.

Changing the database collation does not create duplicates among any system names for the
database objects. If duplicate names result from the changed collation, the following
namespaces may cause the failure of a database collation change:

e Object names such as a procedure, table, trigger, or view.

e Schema names

e Principals such as a group, role, or user.

e Scalar-type names such as system and user-defined types.

e Full-text catalog names.

e Column or parameter names within an object.

e Index names within a table.

Duplicate names resulting from the new collation will cause the change action to fail, and SQL
Server will return an error message specifying the namespace where the duplicate was found.
Viewing Database Information

You can use catalog views, system functions, and system stored procedures to return
information about databases, files, and filegroups.

Permissions

Requires ALTER permission on the database.

Examples

A. Changing the name of a database

The following example changes the name of the adventureliorks2012 database to Northwind.
USE master;

GO

ALTER DATABASE AdventureWorks2012

Modify Name = Northwind ;

GO

50

B. Changing the collation of a database

The following example creates a database named testdb with the
SQL Latinl General CP1 CI AS collation, and then changes the collation of the testdb
database to COLLATE French CI AIL.

USE master;

GO

CREATE DATABASE testdb
COLLATE SQL Latinl General CP1 CI AS ;
GO

ALTER DATABASE testDB
COLLATE French CI AT ;
GO

See Also

CREATE DATABASE
DATABASEPROPERTYEX

DROP DATABASE

SET TRANSACTION ISOLATION LEVEL
EVENTDATA

sp _configure

sp spaceused
sys.databases (Transact-SOL)

sys.database files

sys.database mirroring witnesses

sys.data spaces (Transact-SQL)

sys.filegroups
sys.master files (Transact-SQL)

System Databases

ALTER DATABASE File and Filegroup Options

Modifies the files and filegroups associated with the database. Adds or removes files and
filegroups from a database, and changes the attributes of a database or its files and filegroups.
For other ALTER DATABASE options, see ALTER DATABASE (Transact-SQL).

=k Transact-SQL Syntax Conventions

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/0dd5b794-733b-4a3c-b5a4-62f9f1f0f22d(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�
http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/30468a7c-4225-4d35-aa4a-ffa7da4f1282(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

Syntax

ALTER DATABASE database name
{
<add_or_modify_files>
| <add_or_modify_filegroups>
}
(]

<add_or_modify files>::=
{
ADD FILE <filespec> [,..n]
[TO FILEGROUP { filegroup_name }]

| ADD LOG FILE <filespec> [,..n]

| REMOVE FILE 1ogical_file name

| MODIFY FILE <filespec>
}

<filespec>::=
(
NAME = logical_file name
[, NEWNAME = new_logical_ name |
[, FILENAME = {'os_file name'|'filestream path'}]
[, SIZE = size [KB|MB|GB|TB]]
[, MAXSIZE = {max_size [KB|MB | GB|TB]| UNLIMITED }]
[, FILEGROWTH = growth_increment [KB |MB | GB |TB| %1]]
[, OFFLINE]

<add_or_modify_filegroups>::=
{
| ADD FILEGROUP filegroup_name
[CONTAINS FILESTREAM]
| REMOVE FILEGROUP filegroup_name
| MODIFY FILEGROUP filegroup_ name

52

{ <filegroup_updatability_option>
| DEFAULT
| NAME = new_filegroup_name
}
}
<filegroup_updatability_option>::=
{
{ READONLY | READWRITE }
| { READ_ONLY | READ_WRITE }

Arguments

<add_or_modify files>::=

Specifies the file to be added, removed, or modified.
database_name

Is the name of the database to be modified.

ADD FILE
Adds a file to the database.
TO FILEGROUP { filegroup_name }
Specifies the filegroup to which to add the specified file. To display the current filegroups
and which filegroup is the current default, use the sys.filegroups catalog view.
ADD LOG FILE
Adds a log file be added to the specified database.

REMOVE FILE logical_file_name

Removes the logical file description from an instance of SQL Server and deletes the physical
file. The file cannot be removed unless it is empty.

logical_file_name
Is the logical name used in SQL Server when referencing the file.

MODIFY FILE

Specifies the file that should be modified. Only one <filespec> property can be changed at a
time. NAME must always be specified in the <filespec> to identify the file to be modified. If
SIZE is specified, the new size must be larger than the current file size.

To modify the logical name of a data file or log file, specify the logical file name to be
renamed in the NAME clause, and specify the new logical name for the file in the NEWNAME
clause. For example:

MODIFY FILE (NAME = logical file name, NEWNAME =

53

http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�

new logical name)

To move a data file or log file to a new location, specify the current logical file name in the
NAME clause and specify the new path and operating system file name in the FILENAME
clause. For example:

MODIFY FILE (NAME = logical file name, FILENAME = '

new path/os file name ')

When you move a full-text catalog, specify only the new path in the FILENAME clause. Do not
specify the operating-system file name.

For more information, see Moving Database Files.

For a FILESTREAM filegroup, NAME can be modified online. FILENAME can be modified
online; however, the change does not take effect until after the container is physically

relocated and the server is shutdown and then restarted.

You can set a FILESTREAM file to OFFLINE. When a FILESTREAM file is offline, its parent
filegroup will be internally marked as offline; therefore, all access to FILESTREAM data within
that filegroup will fail.

<add_or_modify_files> options are not available in a Contained Database.
<filespec>::=
Controls the file properties.
NAME logical_file_name
Specifies the logical name of the file.
logical_file_name

Is the logical name used in an instance of SQL Server when referencing the file.

NEWNAME new_logical_file_name
Specifies a new logical name for the file.
new_logical_file_name
Is the name to replace the existing logical file name. The name must be unique within the

database and comply with the rules for identifiers. The name can be a character or
Unicode constant, a regular identifier, or a delimited identifier.

FILENAME { 'os_file_name’ | ‘filestream_path' }
Specifies the operating system (physical) file name.
' os_file_name '
For a standard (ROWS) filegroup, this is the path and file name that is used by the
operating system when you create the file. The file must reside on the server on which SQL

Server is installed. The specified path must exist before executing the ALTER DATABASE
statement.

SIZE, MAXSIZE, and FILEGROWTH parameters cannot be set when a UNC path is specified

http://msdn.microsoft.com/en-us/library/89f01b10-5fae-4ed8-b0fb-a4b9f540fd28(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

for the file.

System databases cannot reside on UNC share directories.

Data files should not be put on compressed file systems unless the files are read-only
secondary files, or if the database is read-only. Log files should never be put on
compressed file systems.

If the file is on a raw partition, os_file_name must specify only the drive letter of an existing
raw partition. Only one file can be put on each raw partition.
‘filestream_path’

For a FILESTREAM filegroup, FILENAME refers to a path where FILESTREAM data will be
stored. The path up to the last folder must exist, and the last folder must not exist. For
example, if you specify the path C:\MyFiles\MyFilestreamData, C:\MyFiles must exist before
you run ALTER DATABASE, but the MyFilestreamData folder must not exist.

The filegroup and file (<filespec>) must be created in the same statement.

The SIZEand FILEGROWTH properties do not apply to a FILESTREAM filegroup.

SIZE size
Specifies the file size. SIZE does not apply to FILESTREAM filegroups.
size
Is the size of the file.

When specified with ADD FILE, size is the initial size for the file. When specified with
MODIFY FILE, size is the new size for the file, and must be larger than the current file size.

When size is not supplied for the primary file, the SQL Server uses the size of the primary
file in the model database. When a secondary data file or log file is specified but size is not
specified for the file, the Database Engine makes the file 1 MB.

The KB, MB, GB, and TB suffixes can be used to specify kilobytes, megabytes, gigabytes, or
terabytes. The default is MB. Specify a whole number and do not include a decimal. To
specify a fraction of a megabyte, convert the value to kilobytes by multiplying the number
by 1024. For example, specify 1536 KB instead of 1.5 MB (1.5 x 1024 = 1536).
MAXSIZE { max_size| UNLIMITED }
Specifies the maximum file size to which the file can grow.
max_size

Is the maximum file size. The KB, MB, GB, and TB suffixes can be used to specify kilobytes,
megabytes, gigabytes, or terabytes. The default is MB. Specify a whole number and do not
include a decimal. If max_size is not specified, the file size will increase until the disk is full.

UNLIMITED
Specifies that the file grows until the disk is full. In SQL Server, a log file specified with

unlimited growth has a maximum size of 2 TB, and a data file has a maximum size of 16

TB. There is no maximum size when this option is specified for a FILESTREAM container. It
continues to grow until the disk is full.

FILEGROWTH growth_increment
Specifies the automatic growth increment of the file. The FILEGROWTH setting for a file
cannot exceed the MAXSIZE setting. FILEGROWTH does not apply to FILESTREAM filegroups.
growth_increment
Is the amount of space added to the file every time new space is required.
The value can be specified in MB, KB, GB, TB, or percent (%). If a number is specified
without an MB, KB, or % suffix, the default is MB. When % is specified, the growth

increment size is the specified percentage of the size of the file at the time the increment
occurs. The size specified is rounded to the nearest 64 KB.

A value of 0 indicates that automatic growth is set to off and no additional space is
allowed.

If FILEGROWTH is not specified, the default value is 1 MB for data files and 10% for log
files, and the minimum value is 64 KB.

Starting in SQL Server 2005, the default growth increment for data files has changed from 10% to 1
MB. The log file default of 10% remains unchanged.

OFFLINE

Sets the file offline and makes all objects in the filegroup inaccessible.

'a Caution
Use this option only when the file is corrupted and can be restored. A file set to OFFLINE can only be
set online by restoring the file from backup. For more information about restoring a single file, see

RESTORE (Transact-SOL).

<filespec> options are not available in a Contained Database.
<add_or_modify_filegroups>::=
Add, modify, or remove a filegroup from the database.
ADD FILEGROUP filegroup_name
Adds a filegroup to the database.

CONTAINS FILESTREAM
Specifies that the filegroup stores FILESTREAM binary large objects (BLOBs) in the file system.

REMOVE FILEGROUP filegroup_name

Removes a filegroup from the database. The filegroup cannot be removed unless it is empty.
Remove all files from the filegroup first. For more information, see "REMOVE FILE
logical_file_name," earlier in this topic.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

Unless the FILESTREAM Garbage Collector has removed all the files from a FILESTREAM container, the
ALTER DATABASE REMOVE FILE operation to remove a FILESTREAM container will fail and return an
error. See the "Remove FILESTREAM Container" section in Remarks later in this topic.

MODIFY FILEGROUP filegroup_name { <filegroup_updatability option> | DEFAULT | NAME =
new_filegroup_name }
Modifies the filegroup by setting the status to READ_ONLY or READ_WRITE, making the
filegroup the default filegroup for the database, or changing the filegroup name.
<filegroup_updatability_option>

Sets the read-only or read/write property to the filegroup.

DEFAULT

Changes the default database filegroup to filegroup_name. Only one filegroup in the
database can be the default filegroup. For more information, see Understanding Files
and Filegroups.

NAME = new_filegroup_name
Changes the filegroup name to the new_filegroup_name.
<filegroup_updatability_option>::=
Sets the read-only or read/write property to the filegroup.
READ_ONLY | READONLY

Specifies the filegroup is read-only. Updates to objects in it are not allowed. The primary
filegroup cannot be made read-only. To change this state, you must have exclusive access to
the database. For more information, see the SINGLE_USER clause.

Because a read-only database does not allow data modifications:
e Automatic recovery is skipped at system startup.
e Shrinking the database is not possible.

e No locking occurs in read-only databases. This can cause faster query performance.

The keyword READONLY will be removed in a future version of Microsoft SQL Server. Avoid using
READONLY in new development work, and plan to modify applications that currently use READONLY.
Use READ_ONLY instead.
READ_WRITE | READWRITE
Specifies the group is READ_WRITE. Updates are enabled for the objects in the filegroup. To

change this state, you must have exclusive access to the database. For more information, see
the SINGLE_USER clause.

The keyword READWRITE will be removed in a future version of Microsoft SQL Server. Avoid using

57

http://msdn.microsoft.com/en-us/library/9ca11918-480d-4838-9198-cec221ef6ad0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ca11918-480d-4838-9198-cec221ef6ad0(SQL.110)�

READWRITE in new development work, and plan to modify applications that currently use READWRITE.
Use READ_WRITE instead.

The status of these options can be determined by examining the is_read_only column in the
sys.databases catalog view or the Updateability property of the DATABASEPROPERTYEX
function.

Remarks
To decrease the size of a database, use DBCC SHRINKDATABASE.
You cannot add or remove a file while a BACKUP statement is running.

A maximum of 32,767 files and 32,767 filegroups can be specified for each database.

In SQL Server 2005 or later, the state of a database file (for example, online or offline), is
maintained independently from the state of the database. For more information, see File States.
The state of the files within a filegroup determines the availability of the whole filegroup. For a
filegroup to be available, all files within the filegroup must be online. If a filegroup is offline, any
try to access the filegroup by an SQL statement will fail with an error. When you build query
plans for SELECT statements, the query optimizer avoids nonclustered indexes and indexed
views that reside in offline filegroups. This enables these statements to succeed. However, if the
offline filegroup contains the heap or clustered index of the target table, the SELECT statements
fail. Additionally, any INSERT, UPDATE, or DELETE statement that modifies a table with any index
in an offline filegroup will fail.

Moving Files

In SQL Server 2005 or later, you can move system or user-defined data and log files by
specifying the new location in FILENAME. This may be useful in the following scenarios:

e Failure recovery. For example, the database is in suspect mode or shutdown caused by
hardware failure

e Planned relocation

e Relocation for scheduled disk maintenance
For more information, see Moving Database Files.
Initializing Files

By default, data and log files are initialized by filling the files with zeros when you perform one
of the following operations:

e Create a database

e Add files to an existing database
e Increase the size of an existing file
e Restore a database or filegroup

Data files can be initialized instantaneously. This enables for fast execution of these file
operations.

Removing a FILESTREAM Container

58

http://msdn.microsoft.com/en-us/library/fc976afd-1edb-4341-bf41-c4a42a69772b(SQL.110)�
http://msdn.microsoft.com/en-us/library/b426474d-8954-4df0-b78b-887becfbe8d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89f01b10-5fae-4ed8-b0fb-a4b9f540fd28(SQL.110)�

Even though FILESTREAM container may have been emptied using the “DBCC SHRINKFILE"
operation, the database may still need to maintain references to the deleted files for various

system maintenance reasons. sp filestream force garbage collection (Transact-SQL) will run the

FILESTREAM Garbage Collector to remove these files when it is safe to do so. Unless the
FILESTREAM Garbage Collector has removed all the files from a FILESTREAM container, the
ALTER DATABASEREMOVE FILE operation will fail to remove a FILESTREAM container and will
return an error. The following process is recommended to remove a FILESTREAM container.

1. Run DBCC SHRINKFILE with the EMPTYFILE option to move the active contents of this
container to other containers.

Ensure that Log backups have been taken, in the FULL or BULK_LOGGED recovery model.

3. Ensure that the replication log reader job has been run, if relevant.

Run sp filestream force garbage collection to force the garbage collector to delete any files

that are no longer needed in this container.
5. Execute ALTER DATABASE with the REMOVE FILE option to remove this container.
6. Repeat steps 2 through 4 once more to complete the garbage collection.
7. Use ALTER Database..REMOVE FILE to remove this container.
Examples
A. Adding a file to a database
The following example adds a 5-MB data file to the Adventureworks2012 database.
USE master;
GO
ALTER DATABASE AdventureWorks2012
ADD FILE
(

NAME = Testldat2,

FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQLlOi50.MSSQLSERVER\MSSQL\DATA\tldatZ.ndf',

SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB
)i
GO
B. Adding a filegroup with two files to a database

The following example creates the filegroup Test1FG1 in the AdventureWorks2012 database
and adds two 5-MB files to the filegroup.

USE master
GO

59

http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�
http://msdn.microsoft.com/en-us/library/e02b2318-bee9-4d84-a61f-2fddcf268c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�

ALTER DATABASE AdventureWorks2012
ADD FILEGROUP TestlFG1l;
GO
ALTER DATABASE AdventureWorks2012
ADD FILE
(

NAME = testldat3,

FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQLlOi50.MSSQLSERVER\MSSQL\DATA\tldat3.ndf',

SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB

NAME = testldat4,

FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL1075O.MSSQLSERVER\MSSQL\DATA\tldat4.ndf',

SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB

)

TO FILEGROUP TestlFG1;

GO

C. Adding two log files to a database
The following example adds two 5-MB log files to the Adventureworks2012 database.
USE master;
GO
ALTER DATABASE AdventureWorks2012
ADD LOG FILE
(
NAME = testllog2,

FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10 50.MSSQLSERVER\MSSQL\DATA\test2log.ldf"',

SIZE = 5MB,
MAXSIZE = 100MB,

60

FILEGROWTH = 5MB

NAME = testllog3,

FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10 50.MSSQLSERVER\MSSQL\DATA\test3log.ldf"',

SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB
)
GO

D. Removing a file from a database

The following example removes one of the files added in example B.
USE master;

GO

ALTER DATABASE AdventureWorks2012

REMOVE FILE testldat4;

GO

E. Modifying a file
The following example increases the size of one of the files added in example B.
USE master;
GO
ALTER DATABASE AdventureWorks2012
MODIFY FILE
(NAME = testldat3,
SIZE = 20MB);
GO

F. Moving a file to a new location
The following example moves the Test1dat?2 file created in example A to a new directory.

61

You must physically move the file to the new directory before running this example.
Afterward, stop and start the instance of SQL Server or take the database OFFLINE
and then ONLINE to implement the change.

USE master;

GO

ALTER DATABASE AdventureWorks2012

MODIFY FILE

(

)7
GO

NAME = Testldat2,

FILENAME = N'c:\tldat2.ndf'

G. Moving tempdb to a new location

The following example moves tempdb from its current location on the disk to another disk
location. Because tempdb is re-created each time the MSSQLSERVER service is started, you do
not have to physically move the data and log files. The files are created when the service is
restarted in step 3. Until the service is restarted, tempdb continues to function in its existing
location.

1.

Determine the logical file names of the tempdb database and their current location on disk.
SELECT name, physical name
FROM sys.master files
WHERE database id = DB ID('tempdb');
GO
Change the location of each file by using ALTER DATABASE.
USE master;
GO
ALTER DATABASE tempdb
MODIFY FILE (NAME = tempdev, FILENAME = 'E:\SQLData\tempdb.mdf');
GO
ALTER DATABASE tempdb
MODIFY FILE (NAME = templog, FILENAME = 'E:\SQLData\templog.ldf');
GO
Stop and restart the instance of SQL Server.
Verify the file change.

SELECT name, physical name

62

FROM sys.master files

WHERE database id = DB ID('tempdb');
5. Delete the tempdb.mdf and templog.Idf files from their original location.
H. Making a filegroup the default

The following example makes the Test1FG1 filegroup created in example B the default
filegroup. Then, the default filegroup is reset to the prIMARY filegroup. Note that PRIMARY must
be delimited by brackets or quotation marks.

USE master;

GO

ALTER DATABASE AdventureWorks2012
MODIFY FILEGROUP TestlFGl DEFAULT;
GO

ALTER DATABASE AdventureWorks2012
MODIFY FILEGROUP [PRIMARY] DEFAULT;
GO

I. Adding a Filegroup Using ALTER DATABASE

The following example adds a FILEGROUP that contains the FILESTREAM clause to the
FileStreamPhotoDB database.

--Create and add a FILEGROUP that CONTAINS the FILESTREAM clause to
--the FileStreamPhotoDB database.

ALTER database FileStreamPhotoDB

ADD FILEGROUP TodaysPhotoShoot

CONTAINS FILESTREAM

GO

--Add a file for storing database photos to FILEGROUP
ALTER database FileStreamPhotoDB
ADD FILE
(
NAME= 'PhotoShootl',
FILENAME = 'C:\Users\Administrator\Pictures\TodaysPhotoShoot.ndf'
)
TO FILEGROUP TodaysPhotoShoot

GO

63

See Also

CREATE DATABASE
DATABASEPROPERTYEX
DROP DATABASE

sp spaceused

sys.databases (Transact-SQL)
sys.database files

sys.data spaces (Transact-SQL)

sys.filegroups
sys.master files (Transact-SQL)

Designing and Implementing FILESTREAM Storage
DBCC SHRINKFILE
sp filestream force garbage collection

ALTER DATABASE SET Options

This topic contains the ALTER DATABASE syntax that is related to setting database options. For
other ALTER DATABASE syntax, see ALTER DATABASE (Transact-SQL). Database mirroring,
AlwaysOn Availability Groups, and compatibility levels are SET options but are described in
separate topics because of their length. For more information, see ALTER DATABASE Database
Mirroring (Transact-SQL), ALTER DATABASE SET HADR (Transact-SQL), and ALTER DATABASE
Compatibility Level (Transact-SQL).

=k Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE { database_name | CURRENT }
SET
{

<optionspec> [,..n] [WITH <termination>]

<optionspec> ::=
{
<auto_option>
| <change_tracking_option>
| <containment_option>

64

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�
http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/97509274-c3f8-43e5-a37c-52f1ffe0961a(SQL.110)�
http://msdn.microsoft.com/en-us/library/e02b2318-bee9-4d84-a61f-2fddcf268c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

| <cursor_option>

| <database_mirroring_option>

| <date_correlation_optimization_option>
| <db_encryption_option>

| <db_state_option>

| <db_update_option>

| <db_user_access_option>

| <external_access_option>

| FILESTREAM (<FILESTREAM_option>)
| <HADR options>

| <parameterization_option>

| <recovery_option>

| <target_recovery_time_option>

| <service_broker_option>

| <snapshot_option>

| <sql_option>

<auto_option> ::=
{
AUTO_CLOSE { ON | OFF }

| AUTO_CREATE_STATISTICS { ON | OFF }

| AUTO_SHRINK { ON | OFF }

| AUTO_UPDATE_STATISTICS { ON | OFF }

| AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }
}

<change_tracking_option> ::=
{
CHANGE_TRACKING
{
= OFF
| = ON [(<change_tracking_option_list > [,...n])]
| (<change_tracking_option_list> [,..n1])

}

<change_tracking_option_list> ::=
{
AUTO_CLEANUP = { ON | OFF }
| CHANGE_RETENTION = retention_period { DAYS | HOURS | MINUTES }
}

<containment_option> ::=
CONTAINMENT = { NONE | PARTIAL }

<cursor_option> ::=
{
CURSOR_CLOSE_ON_COMMIT { ON | OFF }
| CURSOR_DEFAULT { LOCAL | GLOBAL }
}

<database_mirroring_option>
ALTER DATABASE Database Mirroring

<date_correlation_optimization_option> ::=
DATE_CORRELATION_OPTIMIZATION { ON | OFF }

<db_encryption_option> ::=
ENCRYPTION { ON | OFF }

<db_state_option> ::=
{ ONLINE | OFFLINE | EMERGENCY }

<db_update_option> ::=
{ READ_ONLY | READ_WRITE }

<db_user_access_option> ::=
{ SINGLE_USER | RESTRICTED_USER | MULTI_USER }

66

<external_access_option> ::=
{
DB_CHAINING { ON | OFF }
| TRUSTWORTHY { ON | OFF }
| DEFAULT_FULLTEXT_LANGUAGE = { <Icid> | <language name> | <language alias> }
| DEFAULT_LANGUAGE = { <Icid> | <language name> | <language alias> }
| NESTED_TRIGGERS = { OFF | ON }
| TRANSFORM_NOISE_WORDS = { OFF | ON }
| TWO_DIGIT_YEAR_CUTOFF = { 1753, ..., 2049, ..., 9999 }
}
<FILESTREAM _option> ::=
{
NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }
| DIRECTORY_NAME = <directory_name>
}
<HADR options> ::=
ALTER DATABASE SET HADR

<parameterization_option> ::=
PARAMETERIZATION { SIMPLE | FORCED }

<recovery_option> ::=
{
RECOVERY { FULL | BULK_LOGGED | SIMPLE }
| TORN_PAGE_DETECTION { ON | OFF }
| PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }
}

<target_recovery_time_option> ::=
TARGET_RECOVERY_TIME = target_recovery_ time { SECONDS | MINUTES }

<service_broker_option> ::=
{
ENABLE_BROKER
| DISABLE_BROKER

67

| NEW_BROKER

| ERROR_BROKER_CONVERSATIONS

| HONOR_BROKER_PRIORITY { ON | OFF}
}

<snapshot_option> ::=

{

ALLOW_SNAPSHOT_ISOLATION { ON | OFF }
| READ_COMMITTED_SNAPSHOT {ON | OFF }

}
<sql_option> :=
{
ANSI_NULL_DEFAULT { ON | OFF }
| ANSI_NULLS { ON | OFF }
| ANSI_PADDING { ON | OFF }
| ANSI_WARNINGS { ON | OFF }
| ARITHABORT { ON | OFF }
| COMPATIBILITY_LEVEL = { 90 | 100 | 110}
| CONCAT_NULL_YIELDS_NULL { ON | OFF }
| NUMERIC_ROUNDABORT { ON | OFF }
| QUOTED_IDENTIFIER { ON | OFF }
| RECURSIVE_TRIGGERS { ON | OFF }

}

<termination> :=
{
ROLLBACK AFTER integer [SECONDS]
| ROLLBACK IMMEDIATE
| NO_WAIT
}
Arguments
database_name | CURRENT

Is the name of the database to be modified. CURRENT performs the action in the current
database. CURRENT is not supported for all options in all contexts. If CURRENT fails, provide

the database name.

<auto_option> ::=

68

Controls automatic options.

69

AUTO_CLOSE { ON | OFF }
ON
The database is shut down cleanly and its resources are freed after the last user exits.

The database automatically reopens when a user tries to use the database again. For
example, by issuing a USE database_name statement. If the database is shut down cleanly
while AUTO_CLOSE is set to ON, the database is not reopened until a user tries to use the
database the next time the Database Engine is restarted.

OFF

The database remains open after the last user exits.

The AUTO_CLOSE option is useful for desktop databases because it allows for database files
to be managed as regular files. They can be moved, copied to make backups, or even e-
mailed to other users. The AUTO_CLOSE process is asynchronous; repeatedly opening and
closing the database does not reduce performance.

The AUTO_CLOSE option is not available in a Contained Database.

The status of this option can be determined by examining the is_auto_close_on column in the
sys.databases catalog view or the IsAutoClose property of the DATABASEPROPERTYEX
function.

When AUTO_CLOSE is ON, some columns in the sys.databases catalog view and
DATABASEPROPERTYEX function will return NULL because the database is unavailable to retrieve the
data. To resolve this, execute a USE statement to open the database.

Database mirroring requires AUTO_CLOSE OFF.

When the database is set to AUTOCLOSE = ON, an operation that initiates an automatic
database shutdown clears the plan cache for the instance of SQL Server. Clearing the plan
cache causes a recompilation of all subsequent execution plans and can cause a sudden,
temporary decrease in query performance. In SQL Server 2005 Service Pack 2 and higher, for
each cleared cachestore in the plan cache, the SQL Server error log contains the following
informational message: "SQL Server has encountered %d occurrence(s) of cachestore flush
for the '%s' cachestore (part of plan cache) due to some database maintenance or

reconfigure operations". This message is logged every five minutes as long as the cache is
flushed within that time interval.

AUTO_CREATE_STATISTICS { ON | OFF }
ON

The query optimizer creates statistics on single columns in query predicates, as necessary,
to improve query plans and query performance. These single-column statistics are created
when the query optimizer compiles queries. The single-column statistics are created only

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

on columns that are not already the first column of an existing statistics object.

The default is ON. We recommend that you use the default setting for most databases.

OFF

The query optimizer does not create statistics on single columns in query predicates when
it is compiling queries. Setting this option to OFF can cause suboptimal query plans and
degraded query performance.

The status of this option can be determined by examining the is_auto_create_stats_on column
in the sys.databases catalog view or the IsAutoCreateStatistics property of the
DATABASEPROPERTYEX function.

For more information, see the section "Using the Database-Wide Statistics Options" in Using
Statistics to Improve Query Performance.

AUTO_SHRINK { ON | OFF }
ON
The database files are candidates for periodic shrinking.

Both data file and log files can be automatically shrunk. AUTO_SHRINK reduces the size of
the transaction log only if the database is set to SIMPLE recovery model or if the log is
backed up. When set to OFF, the database files are not automatically shrunk during
periodic checks for unused space.

The AUTO_SHRINK option causes files to be shrunk when more than 25 percent of the file
contains unused space. The file is shrunk to a size where 25 percent of the file is unused
space, or to the size of the file when it was created, whichever is larger.

You cannot shrink a read-only database.

OFF

The database files are not automatically shrunk during periodic checks for unused space.

The status of this option can be determined by examining the is_auto_shrink_on column in

the sys.databases catalog view or the IsAutoShrink property of the DATABASEPROPERTYEX
function.

The AUTO_SHRINK option is not available in a Contained Database.

AUTO_UPDATE_STATISTICS { ON | OFF }
ON

Specifies that the query optimizer updates statistics when they are used by a query and
when they might be out-of-date. Statistics become out-of-date after insert, update, delete,
or merge operations change the data distribution in the table or indexed view. The query
optimizer determines when statistics might be out-of-date by counting the number of data
modifications since the last statistics update and comparing the number of modifications
to a threshold. The threshold is based on the number of rows in the table or indexed view.

71

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

The query optimizer checks for out-of-date statistics before compiling a query and before
executing a cached query plan. Before compiling a query, the query optimizer uses the
columns, tables, and indexed views in the query predicate to determine which statistics
might be out-of-date. Before executing a cached query plan, the Database Engine verifies
that the query plan references up-to-date statistics.

The AUTO_UPDATE_STATISTICS option applies to statistics created for indexes, single-
columns in query predicates, and statistics that are created by using the CREATE
STATISTICS statement. This option also applies to filtered statistics.

The default is ON. We recommend that you use the default setting for most databases.

Use the AUTO_UPDATE_STATISTICS_ASYNC option to specify whether the statistics are
updated synchronously or asynchronously.

OFF

Specifies that the query optimizer does not update statistics when they are used by a query
and when they might be out-of-date. Setting this option to OFF can cause suboptimal
query plans and degraded query performance.

The status of this option can be determined by examining the is_auto_update_stats_on
column in the sys.databases catalog view or the IsAutoUpdateStatistics property of the
DATABASEPROPERTYEX function.

For more information, see the section "Using the Database-Wide Statistics Options" in Using
Statistics to Improve Query Performance.

AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }
ON
Specifies that statistics updates for the AUTO_UPDATE_STATISTICS option are

asynchronous. The query optimizer does not wait for statistics updates to complete before
it compiles queries.

Setting this option to ON has no effect unless AUTO_UPDATE_STATISTICS is set to ON.
By default, the AUTO_UPDATE_STATISTICS_ASYNC option is set to OFF, and the query
optimizer updates statistics synchronously.

OFF

Specifies that statistics updates for the AUTO_UPDATE_STATISTICS option are synchronous.
The query optimizer waits for statistcs updates to complete before it compiles queries.

Setting this option to OFF has no effect unless AUTO_UPDATE_STATISTICS is set to ON.
The status of this option can be determined by examining the is_auto_update_stats_async_on
column in the sys.databases catalog view.

For more information that describes when to use synchronous or asynchronous statistics
updates, see the section "Using the Database-Wide Statistics Options" in Using Statistics
to Improve Query Performance.

<change_tracking_option> ::=

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

Controls change tracking options. You can enable change tracking, set options, change options,

and disable change tracking. For examples, see the Examples section later in this topic.

ON
Enables change tracking for the database. When you enable change tracking, you can also
set the AUTO CLEANUP and CHANGE RETENTION options.

AUTO_CLEANUP = { ON | OFF }
ON

Change tracking information is automatically removed after the specified retention period.

OFF

Change tracking data is not removed from the database.

CHANGE_RETENTION = retention_period { DAYS | HOURS | MINUTES }

Specifies the minimum period for keeping change tracking information in the database. Data
is removed only when the AUTO_CLEANUP value is ON.

retention_period is an integer that specifies the numerical component of the retention
period.

The default retention period is 2 days. The minimum retention period is 1 minute.

OFF
Disables change tracking for the database. You must disable change tracking on all tables
before you can disable change tracking off the database.

<containment_option> ::=

Controls database containment options.

CONTAINMENT = { NONE | PARTIAL}
NONE

The database is not a contained database.

PARTIAL

The database is a contained database. Setting database containment to partial will fail if
the database has replication, change data capture, or change tracking enabled. Error
checking stops after one failure. For more information about contained databases, see
Understanding Contained Databases.

<cursor_option> ::=
Controls cursor options.

73

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�

CURSOR_CLOSE_ON_COMMIT { ON | OFF }
ON

Any cursors open when a transaction is committed or rolled back are closed.

OFF

Cursors remain open when a transaction is committed; rolling back a transaction closes any
cursors except those defined as INSENSITIVE or STATIC.

Connection-level settings that are set by using the SET statement override the default
database setting for CURSOR_CLOSE_ON_COMMIT. By default, ODBC and OLE DB clients
issue a connection-level SET statement setting CURSOR_CLOSE_ON_COMMIT to OFF for the
session when connecting to an instance of SQL Server. For more information, see SET

CURSOR CLOSE ON COMMIT (Transact-SQOL).

The status of this option can be determined by examining the is_cursor_close_on_commit_on

column in the sys.databases catalog view or the IsCloseCursorsOnCommitEnabled property
of the DATABASEPROPERTYEX function.

CURSOR _DEFAULT { LOCAL | GLOBAL }
Controls whether cursor scope uses LOCAL or GLOBAL.
LOCAL

When LOCAL is specified and a cursor is not defined as GLOBAL when created, the scope
of the cursor is local to the batch, stored procedure, or trigger in which the cursor was
created. The cursor name is valid only within this scope. The cursor can be referenced by
local cursor variables in the batch, stored procedure, or trigger, or a stored procedure
OUTPUT parameter. The cursor is implicitly deallocated when the batch, stored procedure,
or trigger ends, unless it was passed back in an OUTPUT parameter. If the cursor is passed
back in an OUTPUT parameter, the cursor is deallocated when the last variable that
references it is deallocated or goes out of scope.

GLOBAL

When GLOBAL is specified, and a cursor is not defined as LOCAL when created, the scope
of the cursor is global to the connection. The cursor name can be referenced in any stored
procedure or batch executed by the connection.

The cursor is implicitly deallocated only at disconnect. For more information, see DECLARE

CURSOR.

The status of this option can be determined by examining the is_local_cursor_default column

in the sys.databases catalog view or the IsLocalCursorsDefault property of the

DATABASEPROPERTYEX function.
<database_mirroring>
For the argument descriptions, see ALTER DATABASE Database Mirroring (Transact-SQL).
<date_correlation_optimization_option> ::=

Controls the date_correlation_optimization option.

74

http://msdn.microsoft.com/en-us/library/7b976154-98ce-4a06-bbae-7e59c34211f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/7b976154-98ce-4a06-bbae-7e59c34211f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5a3a27aa-03e8-4c98-a27e-809282379b21(SQL.110)�
http://msdn.microsoft.com/en-us/library/5a3a27aa-03e8-4c98-a27e-809282379b21(SQL.110)�

DATE_CORRELATION_OPTIMIZATION { ON | OFF }
ON
SQL Server maintains correlation statistics between any two tables in the database that are
linked by a FOREIGN KEY constraint and have datetime columns.
OFF
Correlation statistics are not maintained.
To set DATE_CORRELATION_OPTIMIZATION to ON, there must be no active connections to

the database except for the connection that is executing the ALTER DATABASE statement.
Afterwards, multiple connections are supported.

The current setting of this option can be determined by examining the is_date_correlation_on
column in the sys.databases catalog view.

<db_encryption_option> ::=

Controls the database encryption state.

ENCRYPTION {ON | OFF}

Sets the database to be encrypted (ON) or not encrypted (OFF). For more information about
database encryption, see Understanding Transparent Data Encryption (TDE).

When encryption is enabled at the database level all filegroups will be encrypted. Any new
filegroups will inherit the encrypted property. If any filegroups in the database are set to READ
ONLY, the database encryption operation will fail.

You can see the encryption state of the database by using the sys.dm database encryption keys
dynamic management view.

<db_state_option> ::=

Controls the state of the database.

OFFLINE
The database is closed, shut down cleanly, and marked offline. The database cannot be
modified while it is offline.

ONLINE

The database is open and available for use.

EMERGENCY

The database is marked READ_ONLY, logging is disabled, and access is limited to members of
the sysadmin fixed server role. EMERGENCY is primarily used for troubleshooting purposes.
For example, a database marked as suspect due to a corrupted log file can be set to the
EMERGENCY state. This could enable the system administrator read-only access to the
database. Only members of the sysadmin fixed server role can set a database to the
EMERGENCY state.

75

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�

Permissions: ALTER DATABASE permission for the subject database is required to

change a database to the offline or emergency state. The server level ALTER ANY

DATABASE permission is required to move a database from offline to online.
The status of this option can be determined by examining the state and state_desc columns in
the sys.databases catalog view or the Status property of the DATABASEPROPERTYEX function.
For more information, see Database States.
A database marked as RESTORING cannot be set to OFFLINE, ONLINE, or EMERGENCY. A
database may be in the RESTORING state during an active restore operation or when a restore
operation of a database or log file fails because of a corrupted backup file.

<db_update_option> ::=
Controls whether updates are allowed on the database.
READ_ONLY

Users can read data from the database but not modify it.

To improve query performance, update statistics before setting a database to READ_ONLY. If

additional statistics are needed after a database is set to READ_ONLY, the Database Engine will create

statistics in tempdb. For more information about statistics for a read-only database, see Statistics.
READ_WRITE

The database is available for read and write operations.

To change this state, you must have exclusive access to the database. For more information, see

the SINGLE_USER clause.
<db_user_access_option> ::=
Controls user access to the database.
SINGLE_USER

Specifies that only one user at a time can access the database. If SINGLE_USER is specified
and there are other users connected to the database the ALTER DATABASE statement will be
blocked until all users disconnect from the specified database. To override this behavior, see
the WITH <termination> clause.

The database remains in SINGLE_USER mode even if the user that set the option logs off. At
that point, a different user, but only one, can connect to the database.

Before you set the database to SINGLE_USER, verify the AUTO_UPDATE_STATISTICS_ASYNC
option is set to OFF. When set to ON, the background thread used to update statistics takes a
connection against the database, and you will be unable to access the database in single-user
mode. To view the status of this option, query the is_auto_update_stats_async_on column in
the sys.databases catalog view. If the option is set to ON, perform the following tasks:

1. Set AUTO_UPDATE_STATISTICS_ASYNC to OFF.

2. Check for active asynchronous statistics jobs by querying the
sys.dm exec background job gueue dynamic management view.

76

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7f1f111-ca73-4a89-b567-a98d64d6ecb3(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/05d9884f-b74c-4e3c-a23b-c90c1ea5ef02(SQL.110)�

If there are active jobs, either allow the jobs to complete or manually terminate them by

using KILL STATS JOB.

RESTRICTED_USER

RESTRICTED_USER allows for only members of the db_owner fixed database role and
dbcreator and sysadmin fixed server roles to connect to the database, but does not limit their
number. All connections to the database are disconnected in the timeframe specified by the
termination clause of the ALTER DATABASE statement. After the database has transitioned to
the RESTRICTED_USER state, connection attempts by unqualified users are refused.

MULTI_USER

All users that have the appropriate permissions to connect to the database are allowed.

The status of this option can be determined by examining the user_access column in the

sys.databases catalog view or the UserAccess property of the DATABASEPROPERTYEX function.

<external_access_option> ::=

Controls whether the database can be accessed by external resources, such as objects from
another database.

77

http://msdn.microsoft.com/en-us/library/55a8f9f1-3259-45c0-8ab9-60b9c088b4b4(SQL.110)�

DB_CHAINING { ON | OFF }
ON

Database can be the source or target of a cross-database ownership chain.

OFF

Database cannot participate in cross-database ownership chaining.

4 Important

The instance of SQL Server will recognize this setting when the cross db ownership chaining server
option is 0 (OFF). When cross db ownership chaining is 1 (ON), all user databases can participate in

cross-database ownership chains, regardless of the value of this option. This option is set by using

sp _configure.
To set this option, requires CONTROL SERVER permission on the database.

The DB_CHAINING option cannot be set on these system databases: master, model, and
tempdb.

The status of this option can be determined by examining the is_db_chaining_on column in
the sys.databases catalog view.
TRUSTWORTHY { ON | OFF }

ON
Database modules (for example, user-defined functions or stored procedures) that use an
impersonation context can access resources outside the database.

OFF
Database modules in an impersonation context cannot access resources outside the
database.

TRUSTWORTHY is set to OFF whenever the database is attached.

By default, all system databases except the msdb database have TRUSTWORTHY set to OFF.
The value cannot be changed for the model and tempdb databases. We recommend that you
never set the TRUSTWORTHY option to ON for the master database.

To set this option, requires CONTROL SERVER permission on the database.

The status of this option can be determined by examining the is_trustworthy_on column in
the sys.databases catalog view.

DEFAULT_FULLTEXT_LANGUAGE

Specifies the default language value for full-text indexed columns.

4 Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.
DEFAULT_LANGUAGE

Specifies the default language for all newly created logins. Language can be specified by

http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

providing the local id (Icid), the language name, or the language alias. For a list of acceptable
language names and aliases, see sys.syslanguages (Transact-SQL).

4 Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.
NESTED_TRIGGERS

Specifies whether an AFTER trigger can cascade; that is, perform an action that initiates
another trigger, which initiates another trigger, and so on.

4 Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.
TRANSFORM_NOISE_WORDS

Used to suppress an error message if noise words, or stopwords, cause a Boolean operation
on a full-text query to fail.

4 Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.
TWO_DIGIT_YEAR CUTOFF
Specifies an integer from 1753 to 9999 that represents the cutoff year for interpreting two-

digit years as four-digit years.

4 Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

<FILESTREAM _option> ::=

Controls the settings for FileTables.

NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }
OFF

Non-transactional access to FileTable data is disabled.

READ_ONLY

FILESTREAM data in FileTables in this database can be read by non-transactional processes.

FULL

Full non-transactional access to FILESTREAM data in FileTables is enabled.

DIRECTORY_NAME = <directory_name>

A windows-compatible directory name. This name should be unique among all the database-
level directory names in the SQL Server instance. Uniqueness comparison is case-insensitive,

79

http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�

regardless of collation settings. This option must be set before creating a FileTable in this
database.

<parameterization_option> ::=

Controls the parameterization option.

PARAMETERIZATION { SIMPLE | FORCED }
SIMPLE

Queries are parameterized based on the default behavior of the database.

FORCED
SQL Server parameterizes all queries in the database.
The current setting of this option can be determined by examining the
is_parameterization_forced column in the sys.databases catalog view.
<recovery_option> ::=
Controls database recovery options and disk I/O error checking.
FULL

Provides full recovery after media failure by using transaction log backups. If a data file is
damaged, media recovery can restore all committed transactions. For more information, see
Recovery Models (SQL Server).

BULK_LOGGED

Provides recovery after media failure by combining the best performance and least amount
of log-space use for certain large-scale or bulk operations. For information about what
operations can be minimally logged, see Transaction Logs (SQL Server). Under the
BULK_LOGGED recovery model, logging for these operations is minimal. For more
information, see Recovery Models (SQL Server).

SIMPLE

A simple backup strategy that uses minimal log space is provided. Log space can be
automatically reused when it is no longer required for server failure recovery. For more
information, see Recovery Models (SQL Server).

4 Important
The simple recovery model is easier to manage than the other two models but at the expense of
greater data loss exposure if a data file is damaged. All changes since the most recent database or
differential database backup are lost and must be manually reentered.

The default recovery model is determined by the recovery model of the model database. For
more information about selecting the appropriate recovery model, see Database Recovery
Models (SQL Server).

The status of this option can be determined by examining the recovery_model and
recovery_model_desc columns in the sys.databases catalog view or the Recovery property of
the DATABASEPROPERTYEX function.

80

http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�

TORN_PAGE_DETECTION { ON | OFF }
ON
Incomplete pages can be detected by the Database Engine.

OFF

Incomplete pages cannot be detected by the Database Engine.

4 Important

The syntax structure TORN_PAGE_DETECTION ON | OFF will be removed in a future version of SQL
Server. Avoid using this syntax structure in new development work, and plan to modify applications
that currently use the syntax structure. Use the PAGE_VERIFY option instead.

PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

Discovers damaged database pages caused by disk I/O path errors. Disk I/O path errors can
be the cause of database corruption problems and are generally caused by power failures or
disk hardware failures that occur at the time the page is being written to disk.

CHECKSUM

Calculates a checksum over the contents of the whole page and stores the value in the
page header when a page is written to disk. When the page is read from disk, the
checksum is recomputed and compared to the checksum value stored in the page header.
If the values do not match, error message 824 (indicating a checksum failure) is reported to
both the SQL Server error log and the Windows event log. A checksum failure indicates an
I/O path problem. To determine the root cause requires investigation of the hardware,
firmware drivers, BIOS, filter drivers (such as virus software), and other I/O path
components.

TORN_PAGE_DETECTION
Saves a specific 2-bit pattern for each 512-byte sector in the 8-kilobyte (KB) database page
and stored in the database page header when the page is written to disk. When the page
is read from disk, the torn bits stored in the page header are compared to the actual page
sector information. Unmatched values indicate that only part of the page was written to
disk. In this situation, error message 824 (indicating a torn page error) is reported to both
the SQL Server error log and the Windows event log. Torn pages are typically detected by
database recovery if it is truly an incomplete write of a page. However, other I/O path
failures can cause a torn page at any time.

NONE
Database page writes will not generate a CHECKSUM or TORN_PAGE_DETECTION value.
SQL Server will not verify a checksum or torn page during a read even if a CHECKSUM or
TORN_PAGE_DETECTION value is present in the page header.

Consider the following important points when you use the PAGE_VERIFY option:

e The default is CHECKSUM.

e When a user or system database is upgraded to SQL Server 2005 or a later version, the

PAGE_VERIFY value (NONE or TORN_PAGE_DETECTION) is retained. We recommend that
you use CHECKSUM.

In earlier versions of SQL Server, the PAGE_VERIFY database option is set to NONE for the tempdb
database and cannot be modified. In SQL Server 2008 and later versions, the default value for the
tempdb database is CHECKSUM for new installations of SQL Server. When upgrading an
installation SQL Server, the default value remains NONE. The option can be modified. We
recommend that you use CHECKSUM for the tempdb database.

e TORN_PAGE_DETECTION may use fewer resources but provides a minimal subset of the
CHECKSUM protection.

e PAGE_VERIFY can be set without taking the database offline, locking the database, or
otherwise impeding concurrency on that database.

e CHECKSUM is mutually exclusive to TORN_PAGE_DETECTION. Both options cannot be
enabled at the same time.

When a torn page or checksum failure is detected, you can recover by restoring the data or
potentially rebuilding the index if the failure is limited only to index pages. If you encounter a
checksum failure, to determine the type of database page or pages affected, run DBCC
CHECKDB. For more information about restore options, see RESTORE Arguments
(Transact-SQL). Although restoring the data will resolve the data corruption problem, the
root cause, for example, disk hardware failure, should be diagnosed and corrected as soon as

possible to prevent continuing errors.

SQL Server will retry any read that fails with a checksum, torn page, or other I/O error four
times. If the read is successful in any one of the retry attempts, a message will be written to
the error log and the command that triggered the read will continue. If the retry attempts fail,
the command will fail with error message 824.

For more information about checksum, torn page, read-retry, error messages 823 and 824,
and other SQL Server I/O auditing features, see this Microsoft Web site.

The current setting of this option can be determined by examining the page_verify_option
column in the sys.databases catalog view or the IsTornPageDetectionEnabled property of
the DATABASEPROPERTYEX function.

<target_recovery_time_option> ::=

Specifies the frequency of indirect checkpoints on a per-database basis. The default is 0, which
indicates that the database will use automatic checkpoints, whose frequency depends on the
recovery interval setting of the server instance.

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=47160�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

TARGET_RECOVERY_TIME = target_recovery_time { SECONDS | MINUTES }
target_recovery_time

Specifies the maximum bound on the time to recover the specified database in the event
of a crash.

SECONDS

Indicates that target_recovery_time is expressed as the number of seconds.

MINUTES

Indicates that target_recovery_time is expressed as the number of minutes.

For more information about indirect checkpoints, see Database Checkpoints (SQL Server).

<service_broker_option> ::=

Controls the following Service Broker options: enables or disables message delivery, sets a new
Service Broker identifier, or sets conversation priorities to ON or OFF.

ENABLE_BROKER

Specifies that Service Broker is enabled for the specified database. Message delivery is
started, and the is_broker_enabled flag is set to true in the sys.databases catalog view. The
database retains the existing Service Broker identifier.

ENABLE_BROKER requires an exclusive database lock. If other sessions have locked resources in the
database, ENABLE_BROKER will wait until the other sessions release their locks. To enable Service
Broker in a user database, ensure that no other sessions are using the database before you run the
ALTER DATABASE SET ENABLE_BROKER statement, such as by putting the database in single user
mode. To enable Service Broker in the msdb database, first stop SQL Server Agent so that Service
Broker can obtain the necessary lock.

DISABLE_BROKER

Specifies that Service Broker is disabled for the specified database. Message delivery is
stopped, and the is_broker_enabled flag is set to false in the sys.databases catalog view. The
database retains the existing Service Broker identifier.

NEW_BROKER

Specifies that the database should receive a new broker identifier. Because the database is
considered to be a new service broker, all existing conversations in the database are
immediately removed without producing end dialog messages. Any route that references the
old Service Broker identifier must be re-created with the new identifier.

ERROR_BROKER_CONVERSATIONS

Specifies that Service Broker message delivery is enabled. This preserves the existing Service
Broker identifier for the database. Service Broker ends all conversations in the database with
an error. This enables applications to perform regular cleanup for existing conversations.

83

http://msdn.microsoft.com/en-us/library/98a80238-7409-4708-8a7d-5defd9957185(SQL.110)�

HONOR_BROKER_PRIORITY {ON | OFF}
ON
Send operations take into consideration the priority levels that are assigned to
conversations. Messages from conversations that have high priority levels are sent before
messages from conversations that are assigned low priority levels.
OFF
Send operations run as if all conversations have the default priority level.
Changes to the HONOR_BROKER_PRIORITY option take effect immediately for new dialogs or
dialogs that have no messages waiting to be sent. Dialogs that have messages waiting to be
sent when ALTER DATABASE is run will not pick up the new setting until some of the

messages for the dialog have been sent. The amount of time before all dialogs start using the
new setting can vary considerably.

The current setting of this property is reported in the is_broker_priority_honored column in
the sys.databases catalog view.

<snapshot_option> ::=

Determines the transaction isolation level.

84

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

ALLOW_SNAPSHOT_ISOLATION { ON | OFF }
ON

Enables Snapshot option at the database level. When it is enabled, DML statements start
generating row versions even when no transaction uses Snapshot Isolation. Once this
option is enabled, transactions can specify the SNAPSHOT transaction isolation level. When
a transaction runs at the SNAPSHOT isolation level, all statements see a snapshot of data
as it exists at the start of the transaction. If a transaction running at the SNAPSHOT
isolation level accesses data in multiple databases, either ALLOW_SNAPSHOT_ISOLATION
must be set to ON in all the databases, or each statement in the transaction must use
locking hints on any reference in a FROM clause to a table in a database where
ALLOW_SNAPSHOT_ISOLATION is OFF.

OFF

Turns off the Snapshot option at the database level. Transactions cannot specify the
SNAPSHOT transaction isolation level.

When you set ALLOW_SNAPSHOT_ISOLATION to a new state (from ON to OFF, or from OFF
to ON), ALTER DATABASE does not return control to the caller until all existing transactions in
the database are committed. If the database is already in the state specified in the ALTER
DATABASE statement, control is returned to the caller immediately. If the ALTER DATABASE
statement does not return quickly, use

sys.dm tran active snapshot database transactions to determine whether there
are long-running transactions. If the ALTER DATABASE statement is canceled, the database
remains in the state it was in when ALTER DATABASE was started. The sys.databases
catalog view indicates the state of snapshot-isolation transactions in the database. If
snapshot_isolation_state_desc = IN_TRANSITION_TO_ON, ALTER DATABASE
ALLOW_SNAPSHOT_ISOLATION OFF will pause six seconds and retry the operation.

You cannot change the state of ALLOW_SNAPSHOT_ISOLATION if the database is OFFLINE.

If you set ALLOW_SNAPSHOT_ISOLATION in a READ_ONLY database, the setting will be
retained if the database is later set to READ_WRITE.

You can change the ALLOW_SNAPSHOT_ISOLATION settings for the master, model, msdb,
and tempdb databases. If you change the setting for tempdb, the setting is retained every
time the instance of the Database Engine is stopped and restarted. If you change the setting
for model, that setting becomes the default for any new databases that are created, except
for tempdb.

The option is ON, by default, for the master and msdb databases.

The current setting of this option can be determined by examining the

snapshot_isolation_state column in the sys.databases catalog view.
READ_COMMITTED_SNAPSHOT { ON | OFF }

ON

Enables Read-Committed Snapshot option at the database level. When it is enabled, DML
statements start generating row versions even when no transaction uses Snapshot

85

http://msdn.microsoft.com/en-us/library/55b83f9c-da10-4e65-9846-f4ef3c0c0f36(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

Isolation. Once this option is enabled, the transactions specifying the read committed
isolation level use row versioning instead of locking. When a transaction runs at the read
committed isolation level, all statements see a snapshot of data as it exists at the start of
the statement.

OFF
Turns off Read-Committed Snapshot option at the database level. Transactions specifying

the READ COMMITTED isolation level use locking.

To set READ_COMMITTED_SNAPSHOT ON or OFF, there must be no active connections to
the database except for the connection executing the ALTER DATABASE command. However,
the database does not have to be in single-user mode. You cannot change the state of this
option when the database is OFFLINE.

If you set READ_COMMITTED_SNAPSHOT in a READ_ONLY database, the setting will be
retained when the database is later set to READ_WRITE.

READ_COMMITTED_SNAPSHOT cannot be turned ON for the master, tempdb, or msdb
system databases. If you change the setting for model, that setting becomes the default for
any new databases created, except for tempdb.

The current setting of this option can be determined by examining the
is_read_committed_snapshot_on column in the sys.databases catalog view.
<sql_option> ::=
Controls the ANSI compliance options at the database level.
ANSI_NULL_DEFAULT { ON | OFF }
Determines the default value, NULL or NOT NULL, of a column or CLR user-defined type
for which the nullability is not explicitly defined in CREATE TABLE or ALTER TABLE statements.
Columns that are defined with constraints follow constraint rules regardless of this setting.
ON
The default value is NULL.

OFF
The default value is NOT NULL.

Connection-level settings that are set by using the SET statement override the default
database-level setting for ANSI_NULL_DEFAULT. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_NULL_DEFAULT to ON for the session when
connecting to an instance of SQL Server. For more information, see SET

ANSI NULL DFLT ON.

For ANSI compatibility, setting the database option ANSI_NULL_DEFAULT to ON changes the
database default to NULL.

The status of this option can be determined by examining the is_ansi_null_default_on column
in the sys.databases catalog view or the IsAnsiNullDefault property of the
DATABASEPROPERTYEX function.

http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c925924-a466-4c8b-aeb2-7e0d341f32db(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c925924-a466-4c8b-aeb2-7e0d341f32db(SQL.110)�

ANSI_NULLS { ON | OFF }
ON

All comparisons to a null value evaluate to UNKNOWN.

OFF

Comparisons of non-UNICODE values to a null value evaluate to TRUE if both values are
NULL.

4 Important

In a future version of SQL Server, ANSI_NULLS will always be ON and any applications that explicitly
set the option to OFF will produce an error. Avoid using this feature in new development work, and
plan to modify applications that currently use this feature.

Connection-level settings that are set by using the SET statement override the default
database setting for ANSI_NULLS. By default, ODBC and OLE DB clients issue a connection-

level SET statement setting ANSI_NULLS to ON for the session when connecting to an
instance of SQL Server. For more information, see SET ANSI NULLS.

SET ANSI_NULLS also must be set to ON when you create or make changes to indexes on
computed columns or indexed views.

The status of this option can be determined by examining the is_ansi_nulls_on column in the
sys.databases catalog view or the IsAnsiNullsEnabled property of the DATABASEPROPERTYEX
function.

ANSI_PADDING { ON | OFF }
ON

Strings are padded to the same length before conversion or inserting to a varchar or
nvarchar data type.

Trailing blanks in character values inserted into varchar or nvarchar columns and trailing
zeros in binary values inserted into varbinary columns are not trimmed. Values are not
padded to the length of the column.

OFF

Trailing blanks for varchar or nvarchar and zeros for varbinary are trimmed.

When OFF is specified, this setting affects only the definition of new columns.

4 Important
In a future version of SQL Server, ANSI_PADDING will always be ON and any applications that explicitly
set the option to OFF will produce an error. Avoid using this feature in new development work, and
plan to modify applications that currently use this feature. We recommend that you always set
ANSI_PADDING to ON. ANSI_PADDING must be ON when you create or manipulate indexes on
computed columns or indexed views.

char(n) and binary(n) columns that allow for nulls are padded to the length of the column
when ANSI_PADDING is set to ON, but trailing blanks and zeros are trimmed when

http://msdn.microsoft.com/en-us/library/aae263ef-a3c7-4dae-80c2-cc901e48c755(SQL.110)�

ANSI_PADDING is OFF. char(n) and binary(n) columns that do not allow nulls are always
padded to the length of the column.

Connection-level settings that are set by using the SET statement override the default
database-level setting for ANSI_PADDING. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_PADDING to ON for the session when
connecting to an instance of SQL Server. For more information, see SET ANSI PADDING.

4 Important

The status of this option can be determined by examining the is_ansi_padding_on column in
the sys.databases catalog view or the IsAnsiPaddingEnabled property of the
DATABASEPROPERTYEX function.

ANSI_ WARNINGS { ON | OFF }

ON
Errors or warnings are issued when conditions such as divide-by-zero occur or null values
appear in aggregate functions.

OFF
No warnings are raised and null values are returned when conditions such as divide-by-
Zero occur.

SET ANSI_WARNINGS must be set to ON when you create or make changes to indexes on

computed columns or indexed views.

Connection-level settings that are set by using the SET statement override the default
database setting for ANSI_WARNINGS. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_ WARNINGS to ON for the session when
connecting to an instance of SQL Server. For more information, see SET

ANSI WARNINGS.

The status of this option can be determined by examining the is_ansi_warnings_on column in

the sys.databases catalog view or the IsAnsiWarningsEnabled property of the
DATABASEPROPERTYEX function.

ARITHABORT { ON | OFF }
ON
A query is ended when an overflow or divide-by-zero error occurs during query execution.
OFF

A warning message is displayed when one of these errors occurs, but the query, batch, or
transaction continues to process as if no error occurred.

SET ARITHABORT must be set to ON when you create or make changes to indexes on
computed columns or indexed views.

The status of this option can be determined by examining the is_arithabort_on column in the

88

http://msdn.microsoft.com/en-us/library/92bd29a3-9beb-410e-b7e0-7bc1dc1ae6d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f82aaab0-334f-427b-89b0-de4af596b4fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/f82aaab0-334f-427b-89b0-de4af596b4fa(SQL.110)�

sys.databases catalog view or the IsArithmeticAbortEnabled property of the
DATABASEPROPERTYEX function.

COMPATIBILITY_LEVEL { 90 | 100 | 110}
For more information, see ALTER DATABASE Compatibility Level (Transact-SOL).

89

CONCAT_NULL_YIELDS_NULL { ON | OFF }
ON
The result of a concatenation operation is NULL when either operand is NULL. For example,

concatenating the character string "This is" and NULL causes the value NULL, instead of the
value "This is".

OFF

The null value is treated as an empty character string.

CONCAT_NULL_YIELDS_NULL must be set to ON when you create or make changes to
indexes on computed columns or indexed views.

4 Important
In a future version of SQL Server, CONCAT_NULL_YIELDS_NULL will always be ON and any applications
that explicitly set the option to OFF will produce an error. Avoid using this feature in new development
work, and plan to modify applications that currently use this feature.

Connection-level settings that are set by using the SET statement override the default

database setting for CONCAT_NULL_YIELDS_NULL. By default, ODBC and OLE DB clients issue

a connection-level SET statement setting CONCAT_NULL_YIELDS_NULL to ON for the session

when connecting to an instance of SQL Server. For more information, see SET

CONCAT NULL YIELDS NULL.

The status of this option can be determined by examining the is_concat_null_yields_null_on

column in the sys.databases catalog view or the IsNullConcat property of the
DATABASEPROPERTYEX function.

QUOTED_IDENTIFIER { ON | OFF }
ON
Double quotation marks can be used to enclose delimited identifiers.

All strings delimited by double quotation marks are interpreted as object identifiers.
Quoted identifiers do not have to follow the Transact-SQL rules for identifiers. They can be
keywords and can include characters not generally allowed in Transact-SQL identifiers. If a
single quotation mark (') is part of the literal string, it can be represented by double
quotation marks (").

OFF
Identifiers cannot be in quotation marks and must follow all Transact-SQL rules for

identifiers. Literals can be delimited by either single or double quotation marks.

SQL Server also allows for identifiers to be delimited by square brackets ([]). Bracketed
identifiers can always be used, regardless of the setting of QUOTED_IDENTIFIER. For more
information, see Database Identifiers.

When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the
metadata of the table, even if the option is set to OFF when the table is created.

Connection-level settings that are set by using the SET statement override the default

http://msdn.microsoft.com/en-us/library/3091b71c-6518-4eb4-88ab-acae49102bc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/3091b71c-6518-4eb4-88ab-acae49102bc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

database setting for QUOTED_IDENTIFIER. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting QUOTED_IDENTIFIER to ON when connecting to an
instance of SQL Server. For more information, see SET QUOTED IDENTIFIER.

The status of this option can be determined by examining the is_quoted_identifier_on column
in the sys.databases catalog view or the IsQuotedIdentifiersEnabled property of the
DATABASEPROPERTYEX function.

NUMERIC_ROUNDABORT { ON | OFF }
ON

An error is generated when loss of precision occurs in an expression.

OFF
Losses of precision do not generate error messages and the result is rounded to the
precision of the column or variable storing the result.
NUMERIC_ROUNDABORT must be set to OFF when you create or make changes to indexes
on computed columns or indexed views.

The status of this option can be determined by examining the is_numeric_roundabort_on
column in the sys.databases catalog view or the IsNumericRoundAbortEnabled property of
the DATABASEPROPERTYEX function.
RECURSIVE_TRIGGERS { ON | OFF }
ON
Recursive firing of AFTER triggers is allowed.

OFF

Only direct recursive firing of AFTER triggers is not allowed. To also disable indirect
recursion of AFTER triggers, set the nested triggers server option to 0 by using
sp_configure.

Only direct recursion is prevented when RECURSIVE_TRIGGERS is set to OFF. To disable indirect
recursion, you must also set the nested triggers server option to 0.
The status of this option can be determined by examining the is_recursive_triggers_on

column in the sys.databases catalog view or the IsRecursiveTriggersEnabled property of the
DATABASEPROPERTYEX function.

WITH <termination> ::=

Specifies when to roll back incomplete transactions when the database is transitioned from one
state to another. If the termination clause is omitted, the ALTER DATABASE statement waits
indefinitely if there is any lock on the database. Only one termination clause can be specified,
and it follows the SET clauses.

91

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

Not all database options use the WITH <termination> clause. For more information, see
the table under "Setting Options of the "Remarks" section of this topic.

ROLLBACK AFTER integer [SECONDS] | ROLLBACK IMMEDIATE

Specifies whether to roll back after the specified number of seconds or immediately.

NO_WAIT
Specifies that if the requested database state or option change cannot complete immediately
without waiting for transactions to commit or roll back on their own, the request will fail.
Remarks
Setting Options
To retrieve current settings for database options, use the sys.databases catalog view or
DATABASEPROPERTYEX

After you set a database option, the modification takes effect immediately.

To change the default values for any one of the database options for all newly created
databases, change the appropriate database option in the model database.

Not all database options use the WITH <termination> clause or can be specified in combination

with other options. The following table lists these options and their option and termination
status.

Options category Can be specified with other | Can use the WITH
options <termination> clause
<db_state_option> Yes Yes
<db_user_access_option> Yes Yes
<db_update_option> Yes Yes
<external_access_option> Yes No
<cursor_option> Yes No
<auto_option> Yes No
<sql_option> Yes No
<recovery_option> Yes No
<target_recovery_time_option> No Yes
<database_mirroring_option> No No
ALLOW_SNAPSHOT_ISOLATION No No
READ_COMMITTED_SNAPSHOT No Yes
<service_broker_option> Yes No

92

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

Options category Can be specified with other | Can use the WITH
options <termination> clause
DATE_CORRELATION_OPTIMIZATION Yes Yes
<parameterization_option> Yes Yes
<change_tracking_option> Yes Yes
<db_encryption> Yes No

The plan cache for the instance of SQL Server is cleared by setting one of the following options:

OFFLINE READ_WRITE

ONLINE MODIFY FILEGROUP DEFAULT
MODIFY_NAME MODIFY FILEGROUP READ_WRITE
COLLATE MODIFY FILEGROUP READ_ONLY
READ_ONLY

Clearing the plan cache causes a recompilation of all subsequent execution plans and can cause
a sudden, temporary decrease in query performance. For each cleared cachestore in the plan
cache, the SQL Server error log contains the following informational message: "SQL Server has
encountered %d occurrence(s) of cachestore flush for the '%s' cachestore (part of plan cache)
due to some database maintenance or reconfigure operations". This message is logged every
five minutes as long as the cache is flushed within that time interval.

Examples
A. Setting options on a database

The following example sets the recovery model and data page verification options for the
AdventureWorks2012 sample database.

USE master;

GO

ALTER DATABASE AdventureWorks2012

SET RECOVERY FULL, PAGE VERIFY CHECKSUM;
GO

B. Setting the database to READ_ONLY

Changing the state of a database or filegroup to READ_ONLY or READ_WRITE requires exclusive
access to the database. The following example sets the database to SINGLE USER mode to

93

obtain exclusive access. The example then sets the state of the AdventureWorks2012 database
to READ ONLY and returns access to the database to all users.

This example uses the termination option WITH ROLLBACK IMMEDIATE in the first ALTER
DATABASE statement. All incomplete transactions will be rolled back and any other
connections to the database will be immediately disconnected.

USE master;

GO

ALTER DATABASE AdventureWorks2012
SET SINGLE USER

WITH ROLLBACK IMMEDIATE;

GO

ALTER DATABASE AdventureWorks2012
SET READ ONLY;

GO

ALTER DATABASE AdventureWorks2012
SET MULTI USER;

GO

C. Enabling snapshot isolation on a database

The following example enables the snapshot isolation framework option for the
AdventureWorks2012 database.

USE AdventureWorks2012;
GO
—-- Check the state of the snapshot isolation framework
-— in the database.
SELECT name, snapshot isolation state,
snapshot isolation state desc AS description

FROM sys.databases
WHERE name = N'AdventureWorks2012';
GO
USE master;
GO
ALTER DATABASE AdventureWorks2012

SET ALLOW SNAPSHOT ISOLATION ON;
GO

94

-- Check again.
SELECT name, snapshot isolation_ state,
snapshot isolation state desc AS description
FROM sys.databases
WHERE name = N'AdventureWorks2012';
GO

The result set shows that the snapshot isolation framework is enabled.
name snapshot isolation state description

AdventureWorks2012 1 ON

D. Enabling, modifying, and disabling change tracking

The following example enables change tracking for the AdventureWorks2012 database and sets
the retention period to 4 days.

ALTER DATABASE AdventureWorks2012
SET CHANGE_TRACKING = ON
(AUTO_CLEANUP = ON, CHANGE_RETENTION = 2 DAYS);

The following example shows how to change the retention period to 3 days.
ALTER DATABASE AdventureWorks2012
SET CHANGE TRACKING (CHANGE RETENTION = 3 DAYS);

The following example shows how to disable change tracking for the AdventureWorks2012
database.

ALTER DATABASE AdventureWorks2012
SET CHANGE_TRACKING = OFF;

See Also

ALTER DATABASE Compeatibility Level (Transact-SQL)
ALTER DATABASE Database Mirroring (Transact-SQL)
ALTER DATABASE SET HADR (Transact-SQL)

Using Statistics to Improve Query Performance
CREATE DATABASE

Configuring and Managing Change Tracking
DATABASEPROPERTYEX

95

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c92ec7e-ae53-4498-8bfd-c66a42a24d54(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

DROP DATABASE
SET TRANSACTION ISOLATION LEVEL

sp _configure
sys.databases (Transact-SOL)

sys.data spaces (Transact-SQL)

ALTER DATABASE Database Mirroring

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Use AlwaysOn Availability Groups instead.

Controls database mirroring for a database. Values specified with the database mirroring

options apply to both copies of the database and to the database mirroring session as a whole.

Only one <database_mirroring_option> is permitted per ALTER DATABASE statement.

We recommend that you configure database mirroring during off-peak hours because
configuration can affect performance.

For ALTER DATABASE options, see ALTER DATABASE (Transact-SQL). For ALTER DATABASE SET
options, see ALTER DATABASE SET Options (Transact-SQL).

=k Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE database_name
SET { <partner_option> | <witness_option> }
<partner_option> ::=
PARTNER { = 'partner_server'
| FAILOVER
| FORCE_SERVICE_ALLOW_DATA_LOSS
| OFF
| RESUME
| SAFETY { FULL | OFF }
| SUSPEND
| TIMEOUT integer
}
<witness_option> ::=
WITNESS { = 'witness_server’

96

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

| OFF
}

Arguments

@ Important
A SET PARTNER or SET WITNESS command can complete successfully when entered, but
fail later.

ALTER DATABASE database mirroring options are not available for a contained database.
database_name

Is the name of the database to be modified.

PARTNER <partner_option>

Controls the database properties that define the failover partners of a database mirroring
session and their behavior. Some SET PARTNER options can be set on either partner; others
are restricted to the principal server or to the mirror server. For more information, see the
individual PARTNER options that follow. A SET PARTNER clause affects both copies of the
database, regardless of the partner on which it is specified.

To execute a SET PARTNER statement, the STATE of the endpoints of both partners must be
set to STARTED. Note, also, that the ROLE of the database mirroring endpoint of each partner
server instance must be set to either PARTNER or ALL. For information about how to specify
an endpoint, see How to: Create a Mirroring Endpoint for Windows
Authentication (Transact-SQL). To learn the role and state of the database mirroring
endpoint of a server instance, on that instance, use the following Transact-SQL statement:

SELECT role desc, state desc FROM
sys.database mirroring endpoints

<partner_option> ::=

Only one <partner_option> is permitted per SET PARTNER clause.

'partner_server'

Specifies the server network address of an instance of SQL Server to act as a failover
partner in a new database mirroring session. Each session requires two partners: one starts
as the principal server, and the other starts as the mirror server. We recommend that these
partners reside on different computers.

This option is specified one time per session on each partner. Initiating a database
mirroring session requires two ALTER DATABASE database SET PARTNER = "partner_server
statements. Their order is significant. First, connect to the mirror server, and specify the
principal server instance as partner_server (SET PARTNER = "principal_server’). Second,
connect to the principal server, and specify the mirror server instance as partner_server

97

http://msdn.microsoft.com/en-us/library/baf1a4b1-6790-4275-b261-490bca33bdb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/baf1a4b1-6790-4275-b261-490bca33bdb9(SQL.110)�

(SET PARTNER = 'mirror_server"); this starts a database mirroring session between these
two partners. For more information, see Overview of Setting Up Database
Mirroring (Transact-SQL).

The value of partner_server is a server network address. This has the following syntax:

TCP://<system-address>:<port>
where

e <system-address> is a string, such as a system name, a fully qualified domain name, or
an IP address, that unambiguously identifies the destination computer system.

e <port> is a port number that is associated with the mirroring endpoint of the partner
server instance.

For more information, see Specifying a Server Network Address (Database

Mirroring).

The following example illustrates the SET PARTNER = "partner_server' clause:

'"TCP://MYSERVER.mydomain.Adventure-Works.com:7777"'

4 Important
If a session is set up by using the ALTER DATABASE statement instead of SQL Server Management
Studio, the session is set to full transaction safety by default (SAFETY is set to FULL) and runs in
high-safety mode without automatic failover. To allow automatic failover, configure a witness; to run
in high-performance mode, turn off transaction safety (SAFETY OFF).

FAILOVER

Manually fails over the principal server to the mirror server. You can specify FAILOVER only
on the principal server. This option is valid only when the SAFETY setting is FULL (the
default).

The FAILOVER option requires master as the database context.

FORCE_SERVICE ALLOW_DATA_LOSS

Forces database service to the mirror database after the principal server fails with the
database in an unsynchronized state or in a synchronized state when automatic failover
does not occur.

We strongly recommend that you force service only if the principal server is no longer
running. Otherwise, some clients might continue to access the original principal database
instead of the new principal database.

FORCE_SERVICE_ALLOW_DATA_LOSS is available only on the mirror server and only under
all the following conditions:

e The principal server is down.
e WITNESS is set to OFF or the witness is connected to the mirror server.

Force service only if you are willing to risk losing some data in order to restore service to
the database immediately.

Forcing service suspends the session, temporarily preserving all the data in the original

98

http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�
http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
www.MYSERVER.mydomain.Adventure-Works.com:7777

principal database. Once the original principal is in service and able to communicate with
the new principal server, the database administrator can resume service. When the session
resumes, any unsent log records and the corresponding updates are lost.

OFF

Removes a database mirroring session and removes mirroring from the database. You can
specify OFF on either partner. For information, see about the impact of removing
mirroring, see Removing Database Mirroring.

RESUME

Resumes a suspended database mirroring session. You can specify RESUME only on the
principal server.

SAFETY { FULL | OFF }
Sets the level of transaction safety. You can specify SAFETY only on the principal server.

The default is FULL. With full safety, the database mirroring session runs synchronously (in
high-safety mode). If SAFETY is set to OFF, the database mirroring session runs
asynchronously (in high-performance mode).

The behavior of high-safety mode depends partly on the witness, as follows:

e When safety is set to FULL and a witness is set for the session, the session runs in
high-safety mode with automatic failover. When the principal server is lost, the session
automatically fails over if the database is synchronized and the mirror server instance
and witness are still connected to each other (that is, they have quorum). For more
information, see Quorum in Database Mirroring Sessions.

If a witness is set for the session but is currently disconnected, the loss of the mirror
server causes the principal server to go down.

e When safety is set to FULL and the witness is set to OFF, the session runs in high-
safety mode without automatic failover. If the mirror server instance goes down, the
principal server instance is unaffected. If the principal server instance goes down, you
can force service (with possible data loss) to the mirror server instance.

If SAFETY is set to OFF, the session runs in high-performance mode, and automatic failover
and manual failover are not supported. However, problems on the mirror do not affect the
principal, and if the principal server instance goes down, you can, if necessary, force service
(with possible data loss) to the mirror server instance—if WITNESS is set to OFF or the
witness is currently connected to the mirror. For more information on forcing service, see
"FORCE_SERVICE_ALLOW_DATA_LOSS" earlier in this section.

4 Important

High-performance mode is not intended to use a witness. However, whenever you set SAFETY to

OFF, we strongly recommend that you ensure that WITNESS is set to OFF.

SUSPEND

Pauses a database mirroring session.

99

http://msdn.microsoft.com/en-us/library/40c72091-8f03-4037-8b55-5e95309fe145(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�

You can specify SUSPEND on either partner.

TIMEOUT integer

Specifies the time-out period in seconds. The time-out period is the maximum time that a
server instance waits to receive a PING message from another instance in the mirroring
session before considering that other instance to be disconnected.

You can specify the TIMEOUT option only on the principal server. If you do not specify this
option, by default, the time period is 10 seconds. If you specify 5 or greater, the time-out
period is set to the specified number of seconds. If you specify a time-out value of 0 to 4
seconds, the time-out period is automatically set to 5 seconds.

4 Important
We recommend that you keep the time-out period at 10 seconds or greater. Setting the value to
less than 10 seconds creates the possibility of a heavily loaded system missing PINGs and declaring
a false failure.

For more information, see Possible Failures During Database Mirroring
Sessions.

WITNESS <witness_option>

Controls the database properties that define a database mirroring witness. A SET WITNESS
clause affects both copies of the database, but you can specify SET WITNESS only on the
principal server. If a witness is set for a session, quorum is required to serve the database,
regardless of the SAFETY setting; for more information, see Quorum in Database
Mirroring Sessions.

We recommend that the witness and failover partners reside on separate computers. For
information about the witness, see The Role of the Witness.

To execute a SET WITNESS statement, the STATE of the endpoints of both the principal and
witness server instances must be set to STARTED. Note, also, that the ROLE of the database
mirroring endpoint of a witness server instance must be set to either WITNESS or ALL. For
information about specifying an endpoint, see The Database Mirroring Endpoint.

To learn the role and state of the database mirroring endpoint of a server instance, on that
instance, use the following Transact-SQL statement:

SELECT role desc, state desc FROM

sys.database mirroring endpoints

Database properties cannot be set on the witness.

<witness_option> ::=

Only one <witness_option> is permitted per SET WITNESS clause.

'witness_server'

100

http://msdn.microsoft.com/en-us/library/d7031f58-5f49-4e6d-9a62-9b420f2bb17e(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7031f58-5f49-4e6d-9a62-9b420f2bb17e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�
http://msdn.microsoft.com/en-us/library/05606de8-90c3-451a-938d-1ed34211dad7(SQL.110)�
http://msdn.microsoft.com/en-us/library/39332dc5-678e-4650-9217-6aa3cdc41635(SQL.110)�

Specifies an instance of the Database Engine to act as the witness server for a database
mirroring session. You can specify SET WITNESS statements only on the principal server.

In a SET WITNESS = 'witness_server' statement, the syntax of witness_server is the same as
the syntax of partner_server.

OFF

Removes the witness from a database mirroring session. Setting the witness to OFF
disables automatic failover. If the database is set to FULL SAFETY and the witness is set to
OFF, a failure on the mirror server causes the principal server to make the database
unavailable.

Remarks
Examples
A. Creating a database mirroring session with a witness

Setting up database mirroring with a witness requires configuring security and preparing the
mirror database, and also using ALTER DATABASE to set the partners. For an example of the
complete setup process, see Setting Up Database Mirroring .

B. Manually failing over a database mirroring session

Manual failover can be initiated from either database mirroring partner. Before failing over, you
should verify that the server you believe to be the current principal server actually is the
principal server. For example, for the database, on that server instance that you think is the
current principal server, execute the following query:

SELECT db.name, m.mirroring role desc
FROM sys.database mirroring m

JOIN sys.databases db

ON db.database id = m.database id
WHERE db.name = N'AdventureWorks2012';
GO

If the server instance is in fact the principal, the value of mirroring role descis Principal.If
this server instance were the mirror server, the SELECT statement would return Mirror.

The following example assumes that the server is the current principal.
1. Manually fail over to the database mirroring partner:
ALTER DATABASE AdventureWorks2012 SET PARTNER FAILOVER;
GO
2. To verify the results of the failover on the new mirror, execute the following query:
SELECT db.name, m.mirroring role desc
FROM sys.database mirroring m

JOIN sys.databases db

101

http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�

ON db.database id = m.database id

WHERE db.name = N'AdventureWorks2012';

GO

The current value of mirroring role desc iS Nnow Mirror.

See Also
CREATE DATABASE
DATABASEPROPERTYEX
sys.database mirroring witnesses

ALTER DATABASE SET HADR

This topic contains the ALTER DATABASE syntax for setting AlwaysOn Availability Groups
options on a secondary database. Only one SET HADR option is permitted per ALTER DATABASE
statement. These options are supported only on secondary replicas.

=k Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE database name
SET HADR
{
{ AVAILABILITY GROUP = group_name | OFF }
| { SUSPEND | RESUME }

}

Arguments
database_name

Is the name of the secondary database to be modified.

SET HADR

Executes the specified AlwaysOn Availability Groups command on the specified database.

{ AVAILABILITY GROUP = group_name | OFF }
Joins or removes the availability database from the specified availability group, as follows:
group_name

Joins the specified database on the secondary replica that is hosted by the server instance
on which you execute the command to the availability group specified by group_name.

The prerequisites for this operation are as follows:

e The database must already have been added to the availability group on the primary

102

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/0dd5b794-733b-4a3c-b5a4-62f9f1f0f22d(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

replica.

e The primary replica must be active. For information about how troubleshoot an
inactive primary replica, see Troubleshooting AlwaysOn Availability Groups
Configuration (SQL Server).

e The primary replica must be online, and the secondary replica must be connected to
the primary replica.

e The secondary database must have been restored using WITH NORECOVERY from
recent database and log backups of the primary database, ending with a log backup
that is recent enough to permit the secondary database to catch up to the primary
database.

To add a database to the availability group, connect to the server instance that hosts the
primary replica, and use the ALTER AVAILABILITY GROUP group_name ADD DATABASE
database_name statement.

For more information, see Joining a Secondary Database to an Availability
Group (SOL Server).

OFF
Removes the specified secondary database from the availability group.

Removing a secondary database can be useful if it has fallen far behind the primary
database, and you do not want to wait for the secondary database to catch up. After
removing the secondary database, you can update it by restoring a sequence of backups
ending with a recent log backup (using RESTORE ... WITH NORECOVERY).

4 Important
To completely remove an availability database from an availability group, connect to the server
instance that hosts the primary replica, and use the ALTER AVAILABILITY GROUP group_name
REMOVE DATABASE availability database_name statement. For more information, see Removing
an Availability Database from an Availability Group (SQL Server).

SUSPEND

Suspends data movement on a secondary database. A SUSPEND command returns as soon

as it has been accepted by the replica that hosts the target database, but actually suspending

the database occurs asynchronously.

The scope of the impact depends on where you execute the ALTER DATABASE statement:

e If you suspend a secondary database on a secondary replica, only the local secondary
database is suspended. Existing connections on the readable secondary remain usable.
New connections to the suspended database on the readable secondary are not allowed
until data movement is resumed.

e If you suspend a database on the primary replica, data movement is suspended to the
corresponding secondary databases on every secondary replica. Existing connections on

103

http://go.microsoft.com/fwlink/?LinkId=225834�
http://go.microsoft.com/fwlink/?LinkId=225834�
http://msdn.microsoft.com/en-us/library/fd7efe79-c1f9-497d-bfe7-b2a2b2321cf5(SQL.110)�
http://msdn.microsoft.com/en-us/library/fd7efe79-c1f9-497d-bfe7-b2a2b2321cf5(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�

a readable secondary remain usable and new connections can be made.

When data movement is suspended due to a forced manual failover, connections to the
new secondary replica are not allowed while data movement is suspended.

When a database on a secondary replica is suspended, both the database and replica
become unsynchronized and are marked as NOT SYNCHRONIZED.

4 Important

While a secondary database is suspended, the send queue of the corresponding primary database will
accumulate unsent transaction log records. Connections to the secondary replica return data that was
available at the time the data movement was suspended.

Note

Suspending and resuming an AlwaysOn secondary database does not directly affect the availability of
the primary database, though suspending a secondary database can impact redundancy and failover
capabilities for the primary database, until the suspended secondary database is resumed. This is in
contrast to database mirroring, where the mirroring state is suspended on both the mirror database
and the principal database until mirroring is resumed. Suspending an AlwaysOn primary database
suspends data movement on all the corresponding secondary databases, and redundancy and failover
capabilities cease for that database until the primary database is resumed.

For more information, see Suspend a Secondary Database in an Availability
Group (SOL Server).

RESUME

Resumes suspended data movement on the specified secondary database. A RESUME

command returns as soon as it has been accepted by the replica that hosts the target

database, but actually resuming the database occurs asynchronously.

The scope of the impact depends on where you execute the ALTER DATABASE statement:

If you resume a secondary database on a secondary replica, only the local secondary
database is resumed. Data movement is resumed unless the database has also been
suspended on the primary replica.

If you resume a database on the primary replica, data movement is resumed to every
secondary replica on which the corresponding secondary database has not also been
suspended locally. To resume a secondary database that was individually suspended on
a secondary replica, connect to the server instance that hosts the secondary replica and
resume the database there.

Under synchronous-commit mode, the database state changes to SYNCHRONIZING. If
no other database is currently suspended, the replica state also changes to
SYNCHRONIZING.

For more information, see Resume a Secondary Database in an Availability
Group (SOL Server).

Database States

104

http://msdn.microsoft.com/en-us/library/86858982-6af1-4e80-9a93-87451f0d7ee9(SQL.110)�
http://msdn.microsoft.com/en-us/library/86858982-6af1-4e80-9a93-87451f0d7ee9(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e9147b-e985-4caa-910e-fc4b38dbf9a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e9147b-e985-4caa-910e-fc4b38dbf9a1(SQL.110)�

When a secondary database is joined to an availability group, the local secondary replica
changes the state of that secondary database from RESTORING to ONLINE. If a secondary
database is removed from the availability group, it is set back to the RESTORING state by the
local secondary replica. This allows you to apply subsequent log backups from the primary
database to that secondary database.

Restrictions

Execute ALTER DATABASE statements outside of both transactions and batches.
Security

Permissions

Requires ALTER permission on the database. Joining a database to an availability group requires
membership in the db_owner fixed database role.

Examples

The following example joins the secondary database, AccountsDb1, to the local secondary
replica of the Accountsac availability group.

ALTER DATABASE AccountsDbl SET HADR AVAILABILITY GROUP = AccountsAG;

To see this Transact-SQL statement used in context, see Example: Setting Up an
Availability Group Using Windows Authentication (Transact-SQL).

See Also

ALTER DATABASE (Transact-SQL)

ALTER AVAILABILITY GROUP (Transact-SQL)

CREATE AVAILABILITY GROUP (Transact-SQL)
Overview of AlwaysOn Availability Groups (SQL Server)

Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)

ALTER DATABASE Compatibility Level

Sets certain database behaviors to be compatible with the specified version of SQL Server. For
other ALTER DATABASE options, see ALTER DATABASE (Transact-SQL).

=k Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE database name

SET COMPATIBILITY_LEVEL = {90 | 100|110}
Arguments

database_name

Is the name of the database to be modified.

105

http://msdn.microsoft.com/en-us/library/8b0a6301-8b79-4415-b608-b40876f30066(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b0a6301-8b79-4415-b608-b40876f30066(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c222f98-7392-4faf-b7ad-5fb60ffa237e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

COMPATIBILITY_LEVEL {90 | 100 | 110 }

Is the version of SQL Server with which the database is to be made compatible. The value
must be one of the following:

90 = SQL Server 2005
100 = SQL Server 2008 and SQL Server 2008 R2
110 = SQL Server 2012

Remarks

For all installations of SQL Server 2012, the default compatibility level is 110. Databases created
in SQL Server 2012 are set to this level unless the model database has a lower compatibility
level. When a database is upgraded to SQL Server 2012 from any earlier version of SQL Server,
the database retains its existing compatibility level if it is at least 90. Upgrading a database with
a compatibility level below 90 sets the database to compatibility level 90. This applies to both
system and user databases. Use ALTER DATABASE to change the compatibility level of the
database. To view the current compatibility level of a database, query the compatibility_level
column in the sys.databases catalog view.

Using Compatibility Level for Backward Compatibility

Compatibility level affects behaviors only for the specified database, not for the entire server.
Compatibility level provides only partial backward compatibility with earlier versions of SQL
Server. Use compatibility level as an interim migration aid to work around version differences in
the behaviors that are controlled by the relevant compatibility-level setting. If existing SQL
Server applications are affected by behavioral differences in SQL Server 2012, convert the
application to work properly. Then use ALTER DATABASE to change the compatibility level to
100. The new compatibility setting for a database takes effect when the database is next made
current (whether as the default database on login or on being specified in a USE statement).
Best Practices

Changing the compatibility level while users are connected to the database can produce
incorrect result sets for active queries. For example, if the compatibility level changes while a
query plan is being compiled, the compiled plan might be based on both the old and new
compatibility levels, resulting in an incorrect plan and potentially inaccurate results. Furthermore,
the problem may be compounded if the plan is placed in the plan cache and reused for
subsequent queries. To avoid inaccurate query results, we recommend the following procedure
to change the compatibility level of a database:

1. Set the database to single-user access mode by using ALTER DATABASE SET SINGLE_USER.
2. Change the compatibility level of the database.

3. Put the database in multiuser access mode by using ALTER DATABASE SET MULTI_USER.

4. For more information about setting the access mode of a database, see ALTER DATABASE

(Transact-SQL).
Compatibility Levels and Stored Procedures

106

When a stored procedure executes, it uses the current compatibility level of the database in
which it is defined. When the compatibility setting of a database is changed, all of its stored
procedures are automatically recompiled accordingly.

Differences Between Compatibility Level 90 and Level 100
This section describes new behaviors introduced with compatibility level 100.

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact
The QUOTED_IDENTIFER setting is The QUOTED IDENTIFIER session Medium
always set to ON for multistatement setting is honored when
table-valued functions when they are | multistatement table-valued functions
created regardless of the session level | are created.
setting.
When you create or alter a partition The current language setting is used to | Medium
function, datetime and smalldatetime | evaluate datetime and smalldatetime
literals in the function are evaluated literals in the partition function.
assuming US_English as the language
setting.
The FOR BROWSE clause is allowed The FOR BROWSE clause is not allowed | Medium
(and ignored) in INSERT and SELECT in INSERT and SELECT INTO
INTO statements. statements.
Full-text predicates are allowed in the | Full-text predicates are not allowed in | Low
OUTPUT clause. the OUTPUT clause.
CREATE FULLTEXT STOPLIST, ALTER CREATE FULLTEXT STOPLIST, ALTER Low
FULLTEXT STOPLIST, and DROP FULLTEXT STOPLIST, and DROP
FULLTEXT STOPLIST are not supported. | FULLTEXT STOPLIST are supported.
The system stoplist is automatically
associated with new full-text indexes.
MERGE is not enforced as a reserved MERGE is a fully reserved keyword. The | Low
keyword. MERGE statement is supported under
both 100 and 90 compatibility levels.
Using the <dml_table_source> You can capture the results of an Low

argument of the INSERT statement
raises a syntax error.

OUTPUT clause in a nested INSERT,
UPDATE, DELETE, or MERGE statement,
and insert those results into a target
table or view. This is done using the
<dml_table_source> argument of the
INSERT statement.

107

Compatibility-level setting of 90

Compatibility-level setting of 100

Possibility of
impact

Unless NOINDEX is specified, DBCC
CHECKDB or DBCC CHECKTABLE
performs both physical and logical
consistency checks on a single table or
indexed view and on all its
nonclustered and XML indexes. Spatial
indexes are not supported.

Unless NOINDEX is specified, DBCC
CHECKDB or DBCC CHECKTABLE
performs both physical and logical
consistency checks on a single table
and on all its nonclustered indexes.
However, on XML indexes, spatial
indexes, and indexed views, only
physical consistency checks are
performed by default.

If WITH EXTENDED_LOGICAL_CHECKS
is specified, logical checks are
performed on indexed views, XML
indexes, and spatial indexes, where
present. By default, physical
consistency checks are performed
before the logical consistency checks.
If NOINDEX is also specified, only the
logical checks are performed.

Low

When an OUTPUT clause is used with a
data manipulation language (DML)
statement and a run-time error occurs
during statement execution, the entire
transaction is terminated and rolled
back.

When an OUTPUT clause is used with a
data manipulation language (DML)
statement and a run-time error occurs
during statement execution, the
behavior depends on the SET
XACT_ABORT setting. If SET
XACT_ABORT is OFF, a statement abort
error generated by the DML statement
using the OUTPUT clause will
terminate the statement, but the
execution of the batch continues and
the transaction is not rolled back. If
SET XACT_ABORT is ON, all run-time
errors generated by the DML
statement using the OUTPUT clause
will terminate the batch, and the
transaction is rolled back.

Low

CUBE and ROLLUP are not enforced as
reserved keywords.

CUBE and ROLLUP are reserved
keywords within the GROUP BY clause.

Low

Strict validation is applied to elements

Lax validation is applied to elements of

Low

108

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact
of the XML anyType type. the anyType type. For more
information, see Wildcard Components
and Content Validation.
The special attributes xsi:nil and The special attributes xsi:nil and Low
xsictype cannot be queried or xsi:type are stored as regular
modified by data manipulation attributes and can be queried and
language statements. modified.
This means that /e/@xsi:nil fails For example, executing the query
while /e/@* ignores the xsi:nil and SELECT x.query('a/b/@*"') returns
xsi:type attributes. However, /e all attributes including xsi:nil and
returns the xsi:nil and xsi:type xsictype. To exclude these types in the
attributes for consistency with SELECT | query, replace @* with @* [namespace-
xmlCol, even if xsi:nil = "false". |uri(.) != "insert xsi namespace uri"
and not (local-name(.) = "type"
Or local-name(.) ="nil".
A user-defined function that converts | A user-defined function that converts | Low
an XML constant string value to a SQL | an XML constant string value to a SQL
Server datetime type is marked as Server datetime type is marked as non-
deterministic. deterministic.
The XML union and list types are not The union and list types are fully Low
fully supported. supported including the following
functionality:
e Union of list
e Union of union
e List of atomic types
e List of union
The SET options required for an The SET options required for an Low
xQuery method are not validated when | xQuery method are validated when the
the method is contained in a view or method is contained in a view or inline
inline table-valued function. table-valued function. An error is
raised if the SET options of the method
are set incorrectly.
XML attribute values that contain end- | XML attribute values that contain end- | Low

of-line characters (carriage return and
line feed) are not normalized
according to the XML standard. That is,
both characters are returned instead of

of-line characters (carriage return and
line feed) are normalized according to
the XML standard. That is, all line
breaks in external parsed entities

109

http://msdn.microsoft.com/en-us/library/ffa7d974-3645-446c-8425-f0b22b6b060a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffa7d974-3645-446c-8425-f0b22b6b060a(SQL.110)�

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact
a single line-feed character. (including the document entity) are
normalized on input by translating
both the two-character sequence #xD
#xA and any #xD that is not followed
by #xA to a single #xA character.
Applications that use attributes to
transport string values that contain
end-of-line characters will not receive
these characters back as they are
submitted. To avoid the normalization
process, use the XML numeric
character entities to encode all end-of-
line characters.
The column properties ROWGUIDCOL | The column properties ROWGUIDCOL | Low
and IDENTITY can be incorrectly and IDENTITY cannot be named as a
named as a constraint. For example the | constraint. Error 156 is returned.
statement CREATE TABLE T (Cl int
CONSTRAINT MyConstraint
IDENTITY) executes, but the
constraint name is not preserved and
is not accessible to the user.
Updating columns by using a two-way | Updating columns by using a two-way | Low
assignment such as UPDATE T1 SET assignment produces expected results
@v = column name = <expression> | because only the statement starting
can produce unexpected results value of the column is accessed during
because the live value of the variable | statement execution.
can be used in other clauses such as
the WHERE and ON clause during
statement execution instead of the
statement starting value. This can
cause the meanings of the predicates
to change unpredictably on a per-row
basis.
This behavior is applicable only when
the compatibility level is set to 90.
Variable assignment is allowed in a Variable assignment is not allowed in a | Low

statement containing a top-level
UNION operator, but returns

statement containing a top-level
UNION operator. Error 10734 is

110

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact
unexpected results. For example, in the | returned.
following statements, local variable ev | To resolve the error, rewrite the query
iS aSSigned the Value Of the COIUmn as Shown in the fo”owing example'
BusinessEntityID from the union of DECLARE @v int
. el v 1inty
two tables. By definition, when the
SELECT statement returns more than | SELECT €v = BusinessEntityID
one value, the variable is assigned the | FROM
last value that is returned. In this case, (SELECT BusinessEntityID
the variable is correctly assigned the FROM HumanResources.Employee
last value, however, the result set of UNTON ALL
the SELECT UNION statement is also
returned. SELECT BusinessEntityID
ALTER DATABASE FROM
Adventurelorks2012 HumanResources.EmployeeAddress)
AS Test;
SET compatibility level = 90;
SELECT Q@Qv;
GO
USE AdventureWorks2012;
GO
DECLARE @v int;
SELECT @v = BusinessEntityID
FROM HumanResources.Employee
UNION ALL
SELECT @v = BusinessEntityID
FROM
HumanResources.EmployeeAddress;
SELECT Qv;
The ODBC function {fn CONVERT()} The ODBC function {fn CONVERT()} Low
uses the default date format of the uses style 121 (a language-
language. For some languages, the independent YMD format) when
default format is YDM, which can result | converting to the ODBC data types
in conversion errors when CONVERT() | SQL_TIMESTAMP, SQL_DATE,
is combined with other functions, such | SQL_TIME, SQLDATE, SQL_TYPE_TIME,
as {fn CURDATE()}, that expect a YMD | and SQL_TYPE_TIMESTAMP.
format.
The ODBC function {fn CURDATE()} The ODBC function {fn CURDATE()} Low

returns only the date in the format

returns both date and time, for

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

'YYYY-MM-DD'. example 'YYYY-MM-DD hh:mm:ss.

Datetime intrinsics such as DATEPART | Datetime intrinsics such as DATEPART | Low

do not require string input values to
be valid datetime literals. For example,
SELECT DATEPART (year, '2007/05-30")
compiles successfully.

require string input values to be valid
datetime literals. Error 241 is returned
when an invalid datetime literal is
used.

Differences Between Lower Compatibility Levels and Level 110
This section describes new behaviors introduced with compatibility level 110.

Compatibility-level setting of 100 or lower

Compatibility-level setting of 110

Common language runtime (CLR) database
objects are executed with version 4 of the
CLR. However, some behavior changes
introduced in version 4 of the CLR are
avoided. For more information, see What's
New in CLR Integration.

CLR database objects are executed with
version 4 of the CLR.

The XQuery functions string-length and
substring count each surrogate as two
characters.

The XQuery functions string-length and
substring count each surrogate as one
character.

PIVOT is allowed in a recursive common
table expression (CTE) query. However, the
query returns incorrect results when there
are multiple rows per grouping.

PIVOT is not allowed in a recursive
common table expression (CTE) query. An
error is returned.

The RC4 algorithm is only supported for
backward compatibility. New material can
only be encrypted using RC4 or RC4_128
when the database is in compatibility level
90 or 100. (Not recommended.) In SQL
Server 2012, material encrypted using RC4
or RC4_128 can be decrypted in any
compatibility level.

New material cannot be encrypted using
RC4 or RC4_128. Use a newer algorithm
such as one of the AES algorithms instead.
In SQL Server 2012, material encrypted
using RC4 or RC4_128 can be decrypted in
any compatibility level.

The default style for CAST and CONVERT
operations on time and datetime2 data
types is 121 except when either type is
used in a computed column expression. For

Under compatibility level 110, the default
style for CAST and CONVERT operations on
time and datetime2 data types is always
121. If your query relies on the old

112

http://msdn.microsoft.com/en-us/library/871fcccd-b726-4b13-9f95-d02b4b39d8ab(SQL.110)�
http://msdn.microsoft.com/en-us/library/871fcccd-b726-4b13-9f95-d02b4b39d8ab(SQL.110)�

Compatibility-level setting of 100 or lower

Compatibility-level setting of 110

computed columns, the default style is O.
This behavior impacts computed columns
when they are created, used in queries
involving auto-parameterization, or used in
constraint definitions.

The following example shows the difference
between styles 0 and 121. It does not
demonstrate the behavior described above.
For more information about date and time
styles, see CAST and CONVERT (Transact-

S0L).

CREATE TABLE t1
datetime?2) ;

(cl time(7), c2

INSERT tl1 (cl,c2) VALUES
(GETDATE () , GETDATE()) ;

SELECT CONVERT (nvarchar (16),cl1,0)
AS TimeStyleO

, CONVERT (nvarchar (16),cl,121)AS
TimeStylel2l

, CONVERT (nvarchar (32),c2,0)
AS Datetime2Stylel

, CONVERT (nvarchar (32),c2,121)AS
Datetime2Stylel2l

FROM t1;

-- Returns values such as the
following.
TimeStyleO
Datetime2Stylel
Datetime2Stylel2l

TimeStylel2l

behavior, use a compatibility level less than
110, or explicitly specify the 0 style in the
affected query.

Upgrading the database to compatibility
level 110 will not change user data that has
been stored to disk. You must manually
correct this data as appropriate. For
example, if you used SELECT INTO to create
a table from a source that contained a
computed column expression described
above, the data (using style 0) would be
stored rather than the computed column
definition itself. You would need to
manually update this data to match style
121.

113

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�

Compatibility-level setting of 100 or lower

Compatibility-level setting of 110

3:15PM 15:15:35.8100000
Jun 7 2011 3:15pM 2011-06-07
15:15:35.8130000

Any columns in remote tables of type
smalldatetime that are referenced in a
partitioned view are mapped as datetime.
Corresponding columns in local tables (in
the same ordinal position in the select list)
must be of type datetime.

Any columns in remote tables of type
smalldatetime that are referenced in a
partitioned view are mapped as
smalldatetime. Corresponding columns in
local tables (in the same ordinal position in
the select list) must be of type
smalldatetime.

After upgrading to 110, the distributed
partitioned view will fail because of the
data type mismatch. You can resolve this by
changing the data type on the remote table
to datetime or setting the compatibility
level of the local database to 100 or lower.

SOUNDEX function implements the
following rules.

1. If character_expression has any double
letters, they are treated as one letter.

2. Ifavowel (A E I, O, U) separates two
consonants that have the same soundex
code, the consonant to the right of the
vowel is coded.

SOUNDEX function implements the
following rules

1. If character_expression has any double
letters, they are treated as one letter.

2. [If character_expression has different
letters side-by-side that have the same
number in the soundex coding guide,
they are treated as one letter.

3. Ifavowel (A E I O, U) separates two
consonants that have the same soundex
code, the consonant to the right of the
vowel is coded.

4. If H or W separate two consonants that
have the same soundex code, the
consonant to the right of the vowel is
not coded.

The additional rules may cause the values
computed by the SOUNDEX function to be
different than the values computed under
earlier compatibility levels. After upgrading
to compatibility level 110, you may need to

114

Compatibility-level setting of 100 or lower Compatibility-level setting of 110

rebuild the indexes, heaps, or CHECK
constraints that use the SOUNDEX function.
For more information, see SOUNDEX

(Transact-SQL)

Reserved Keywords

The compatibility setting also determines the keywords that are reserved by the Database
Engine. The following table shows the reserved keywords that are introduced by each of the
compatibility levels.

Compatibility-level setting Reserved keywords

110 WITHIN GROUP, TRY_CONVERT,
SEMANTICKEYPHRASETABLE,
SEMANTICSIMILARITYDETAILSTABLE,
SEMANTICSIMILARITYTABLE

100 CUBE, MERGE, ROLLUP
90 EXTERNAL, PIVOT, UNPIVOT, REVERT,
TABLESAMPLE

At a given compatibility level, the reserved keywords include all of the keywords introduced at
or below that level. Thus, for instance, for applications at level 110, all of the keywords listed in
the preceding table are reserved. At the lower compatibility levels, level-100 keywords remain

valid object names, but the level-110 language features corresponding to those keywords are

unavailable.

Once introduced, a keyword remains reserved. For example, the reserved keyword PIVOT, which
was introduced in compatibility level 90, is also reserved in levels 100 and 110.

If an application uses an identifier that is reserved as a keyword for its compatibility level, the
application will fail. To work around this, enclose the identifier between either brackets ([]) or
guotation marks (" "); for example, to upgrade an application that uses the identifier EXTERNAL
to compatibility level 90, you could change the identifier to either [EXTERNAL] or "EXTERNAL".
For more information, see Reserved Keywords (Transact-SQL).

Permissions

Requires ALTER permission on the database.
Examples
A. Changing the compatibility level

115

http://msdn.microsoft.com/en-us/library/8f1ed34e-8467-4512-a211-e0f43dee6584(SQL.110)�
http://msdn.microsoft.com/en-us/library/8f1ed34e-8467-4512-a211-e0f43dee6584(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed8b3e27-6796-40f0-aef3-0cac5e0e2418(SQL.110)�

The following example changes the compatibility level of the database to 110, SQL Server
2012.

ALTER DATABASE AdventureWorks2012
SET COMPATIBILITY LEVEL = 110;

GO

See Also

ALTER DATABASE

Reserved Keywords

CREATE DATABASE
DATABASEPROPERTYEX

sys.databases (Transact-SQL)

sys.database files

ALTER DATABASE AUDIT SPECIFICATION

Alters a database audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

=k Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE AUDIT SPECIFICATION audit_specification_name
{
[FOR SERVER AUDIT audit_name]
[{{ADD | DROP} (
{<audit_action_specification> | audit_action_group_name }
)
VLo..n]]
[WITH (STATE = {ON | OFF })]
}
(]
<audit_action_specification>::=
{
<action_specification>[,..n JON [class] securable [(column [,..n])]

BY principal [,..n]

116

http://msdn.microsoft.com/en-us/library/ed8b3e27-6796-40f0-aef3-0cac5e0e2418(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<action_specification>::=

{

action [(column [,.n])]
}
Arguments

audit_specification_name

The name of the audit specification.

audit_name

The name of the audit to which this specification is applied.

audit_action_specification

Name of one or more database-level auditable actions. For a list of audit action groups, see
SQL Server Audit Action Groups and Actions.

audit_action_group_name

Name of one or more groups of database-level auditable actions. For a list of audit action
groups, see SQL Server Audit Action Groups and Actions.

class

Class name (if applicable) on the securable.

securable
Table, view, or other securable object in the database on which to apply the audit action or
audit action group. For more information, see Securables.

column
Column name (if applicable) on the securable.

principal

Name of SQL Server principal on which to apply the audit action or audit action group. For
more information, see Principals (Database Engine).

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification. Audit
specification state changes must be done outside a user transaction and may not have other
changes in the same statement when the transition is ON to OFF.

Remarks

Database audit specifications are non-securable objects that reside in a given database. You
must set the state of an audit specification to the OFF option in order to make changes to a
database audit specification. If ALTER DATABASE AUDIT SPECIFICATION is executed when an
audit is enabled with any options other than STATE=OFF, you will receive an error message. For
more information, see tempdb Database.

117

http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfa748f0-70b0-453c-870a-04b7b205b9ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/ce4053fb-e37a-4851-b711-8e504059a780(SQL.110)�

Permissions

Users with the ALTER ANY DATABASE AUDIT permission can alter database audit specifications
and bind them to any audit.

After a database audit specification is created, it can be viewed by principals with the CONTROL
SERVER, or ALTER ANY DATABASE AUDIT permissions, the sysadmin account, or principals
having explicit access to the audit.

Examples

The following example alters a database audit specification called
HIPPA Audit DB Specification that audits the SELECT statements by the dbo user, for a SQL
Server audit called HIPPA Audit.

ALTER DATABASE AUDIT SPECIFICATION HIPPA Audit DB Specification
FOR SERVER AUDIT HIPPA Audit
ADD (SELECT
ON Tablel (Columnl)
BY dbo)
WITH STATE = ON;
GO
For a full example about how to create an audit, see Understanding SQL Server Audit.

Updated content

Corrected the Permissions section.

See Also

CREATE SERVER AUDIT (Transact-SQL)

ALTER SERVER AUDIT (Transact-SQL)

DROP SERVER AUDIT (Transact-SQL)

CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)

fn get audit file (Transact-SQL)

sys.server audits (Transact-SQL)

118

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�

sys.server file audits (Transact-SOL)

sys.server audit specifications (Transact-SOL)

sys.server audit specifications details (Transact-SQL)

sys.database audit specifications (Transact-SQL)

sys.audit database specification details (Transact-SQL)

sys.dm server audit status

sys.dm audit actions

Create a Server Audit and Server Audit Specification

ALTER DATABASE ENCRYPTION KEY

Alters an encryption key and certificate that is used for transparently encrypting a database. For
more information about transparent database encryption, see Understanding Transparent Data
Encryption (TDE).

=k Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE ENCRYPTION KEY
REGENERATE WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }

|
ENCRYPTION BY SERVER

{
CERTIFICATE Encryptor_Name |

ASYMMETRIC KEY Encryptor_Name
}
(]
Arguments
REGENERATE WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }

Specifies the encryption algorithm that is used for the encryption key.

ENCRYPTION BY SERVER CERTIFICATE Encryptor_Name

Specifies the name of the certificate used to encrypt the database encryption key.

ENCRYPTION BY SERVER ASYMMETRIC KEY Encryptor_Name

Specifies the name of the asymmetric key used to encrypt the database encryption key.

Remarks

119

http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

The certificate or asymmetric key that is used to encrypt the database encryption key must be
located in the master system database.

The database encryption key does not have to be regenerated when a database owner (dbo) is
changed.

After a database encryption key has been modified twice, a log backup must be performed
before the database encryption key can be modified again.

Permissions

Requires CONTROL permission on the database and VIEW DEFINITION permission on the
certificate or asymmetric key that is used to encrypt the database encryption key.
Examples

The following example alters the database encryption key to use the aEs 256 algorithm.
USE AdventureWorks2012;

GO

ALTER DATABASE ENCRYPTION KEY

REGENERATE WITH ALGORITHM = AES 256;

GO

See Also
Understanding Transparent Data Encryption (TDE)

SOL Server Encryption

SOL Server and Database Encryption Keys (Database Engine)

Encryption Hierarchy

ALTER DATABASE SET Options (Transact-SQL)
CREATE DATABASE ENCRYPTION KEY (Transact-SQL)
DROP DATABASE ENCRYPTION KEY (Transact-SQL)
sys.dm database encryption keys

ALTER ENDPOINT

Enables modifying an existing endpoint in the following ways:

e By adding a new method to an existing endpoint.

e By modifying or dropping an existing method from the endpoint.
e By changing the properties of an endpoint.

120

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ead0150e-4943-4ad5-84c8-36f85c7278f4(SQL.110)�
http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�

This topic describes the syntax and arguments that are specific to ALTER ENDPOINT. For
descriptions of the arguments that are common to both CREATE ENDPOINT and ALTER
ENDPOINT, see CREATE ENDPOINT (Transact-SQL).

Native XML Web Services (SOAP/HTTP endpoints) is removed beginning in SQL Server 2012.
.= Transact-SQL Syntax Conventions

Syntax

ALTER ENDPOINT endPointName [AUTHORIZATION login]

[STATE = { STARTED | STOPPED | DISABLED }]

[AS{TCP } (<protocol_specific_items>)]

[FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (
<language_specific_items>

)]

<AS TCP_protocol_specific_arguments> ::=
AS TCP (
LISTENER_PORT = listenerPort
[[,]LISTENERIP = ALL | (4-part-ip) | ("ip_address_v6")]
)
<FOR SERVICE_BROKER_language_specific_arguments> ::=
FOR SERVICE_BROKER (
[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
| CERTIFICATE certificate_name
| WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate name
| CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

}H
[. ENCRYPTION = { DISABLED

|
{{SUPPORTED | REQUIRED }
[ALGORITHM { RC4 | AES | AESRC4 | RC4 AES } 1}

[, MESSAGE_FORWARDING = {ENABLED | DISABLED}]
[, MESSAGE_FORWARD_SIZE = forwardSize

121

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<FOR DATABASE_MIRRORING_language_specific_arguments> ::=
FOR DATABASE_MIRRORING (
[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
| CERTIFICATE certificate_name
| WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate name
| CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
3
[, ENCRYPTION = { DISABLED
|
{{SUPPORTED | REQUIRED }
[ALGORITHM { RC4 | AES | AESRC4 | RC4 AES }]}
]
[.]ROLE = { WITNESS | PARTNER | ALL}

Arguments

The following arguments are specific to ALTER ENDPOINT. For descriptions of the
remaining arguments, see CREATE ENDPOINT (Transact-SQL).

AS {TCP}
You cannot change the transport protocol with ALTER ENDPOINT.

AUTHORIZATION login
The AUTHORIZATION option is not available in ALTER ENDPOINT. Ownership can only be
assigned when the endpoint is created.

FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING }
You cannot change the payload type with ALTER ENDPOINT.

Remarks

When you use ALTER ENDPOINT, specify only those parameters that you want to update. All
properties of an existing endpoint remain the same unless you explicitly change them.

The ENDPOINT DDL statements cannot be executed inside a user transaction.

For information on choosing an encryption algorithm for use with an endpoint, see Choosing an

Encryption Algorithm.

122

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�

e The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

e RC4 is a relatively weak algorithm, and AES is a relatively strong algorithm. But AES is
considerably slower than RCA4. If security is a higher priority for you than speed, we
recommend you use AES.

Permissions

User must be a member of the sysadmin fixed server role, the owner of the endpoint, or have
been granted ALTER ANY ENDPOINT permission.

To change ownership of an existing endpoint, you must use the ALTER AUTHORIZATION
statement. For more information, see ALTER AUTHORIZATION (Transact-SQL).

For more information, see GRANT Endpoint Permissions (Transact-SQL).

See Also
DROP ENDPOINT (Transact-SQL)
eventdata (Transact-SOL)

ALTER EVENT SESSION

Starts or stops an event session or changes an event session configuration.
.= Transact-SQL Syntax Conventions

Syntax

ALTER EVENT SESSION event_session_name
ON SERVER
{
[[{ <add_drop_event> [,..n]}
| { <add_drop_event_target> [,..n]}]
[WITH (<event_session_options> [,..n])]

]
| [STATE = { START | STOP }]

<add_drop_event>::=

123

http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[ADD EVENT <event_specifier>
[({

[SET { event_customizable_attribute = <value> [,..n]}]

[ACTION ({ [event_module guid].event package name.action name [,..n]})

[WHERE <predicate_expression>]
1)]

]
| DROP EVENT <event_specifier> }

<event_specifier> ::=
{

[event_module_guid].event package name.event name

}

<predicate_expression> ::=

{

[NOT] <predicate_factor> | {(<predicate_expression>) }
[{AND | OR} [NOT] { <predicate_factor> | (<predicate_expression>) }]
[,.n]

<predicate_factor>::=

{

<predicate_leaf> | (<predicate_expression>)

<predicate_ leaf>::=

{
<predicate_source_declaration> {=| < > |! =|>|> =| <| < =} <value>

| [event module guid].event package namepredicate compare name (
<predicate_source_declaration>, <value>)

}

<predicate_source_declaration>::=

124

event_field name | (
[event_module_guid].event_package name.predicate_source name)

}

<value>::=

{

number | 'string’

<add_drop_event target>::=
{
ADD TARGET <event_target_specifier>
[(SET { target_parameter name = <value> [,..n]})]
| DROP TARGET <event_target_specifier>

<event_target_specifier>::=
{

[event_module_guid].event_package name.target_name

<event_session_options>::=
{
[MAX_MEMORY =size [KB|MB]]

[[,] EVENT_RETENTION_MODE = { ALLOW SINGLE EVENT LOSS |
ALLOW_MULTIPLE_EVENT_LOSS | NO_EVENT_LOSS }]

[[,] MAX_DISPATCH_LATENCY = { seconds SECONDS | INFINITE }]
[[,] MAX_EVENT_SIZE = size [KB | MB]]

[[,] MEMORY_PARTITION_MODE = { NONE | PER_NODE | PER_CPU }]
[[,] TRACK_CAUSALITY ={ON | OFF }]

[[,] STARTUP_STATE ={ON | OFF }]

}
Arguments

125

Term

Definition

event_session_name

Is the name of an existing event
session.

STATE = START | STOP

Starts or stops the event session.
This argument is only valid when
ALTER EVENT SESSION is applied to
an event session object.

ADD EVENT <event_specifier>

Associates the event identified by
<event_specifier> with the event
session.

[event_module_guid].event_package_name.event_name

Is the name of an event in an event
package, where:

e event_module_guid is the GUID
for the module that contains the
event.

e event_package_name is the
package that contains the action
object.

e event_name is the event object.

Events appear in the

sys.dm_xe_objects view as
object_type 'event'.

SET { event_customizable_attribute = <value> [,..n] }

Specifies customizable attributes for
the event. Customizable attributes
appear in the
sys.dm_xe_object_columns view as
column_type 'customizable " and
object_name = event_name.

ACTION ({
[event_module_guid].event_package_name.action_name [

-n]})

Is the action to associate with the
event session, where:

e event_module_guid is the GUID
for the module that contains the
event.

e event_package_name is the
package that contains the action
object.

e action_name is the action object.

Actions appear in the

126

sys.dm_xe_objects view as
object_type 'action’.

WHERE <predicate_expression>

Specifies the predicate expression
used to determine if an event
should be processed. If
<predicate_expression> is true, the
event is processed further by the
actions and targets for the session.
If <predicate_expression> is false,
the event is dropped by the session
before being processed by the
actions and targets for the session.
Predicate expressions are limited to
3000 characters, which limits string
arguments.

event_field_name

Is the name of the event field that
identifies the predicate source.

[event_module_guid].event_package_name.predicate_sour

ce_name

Is the name of the global predicate
source where:

e event_module_guid is the GUID
for the module that contains the
event.

e event_package_name is the
package that contains the
predicate object.

e predicate_source_name is
defined in the sys.dm_xe_objects
view as object_type
'pred_source'.

[event_module_guid].event_package_name.predicate_com

pare_name

Is the name of the predicate object
to associate with the event, where:

e event_module_guid is the GUID
for the module that contains the
event.

e event_package_name is the
package that contains the
predicate object.

e predicate_compare_name is a
global source defined in the

127

sys.dm_xe_objects view as
object_type 'pred_compare'.

DROP EVENT <event_specifier>

Drops the event identified by
<event_specifier>.
<event_specifier> must be valid in
the event session.

ADD TARGET <event_target_specifier>

Associates the target identified by
<event_target_specifier> with the
event session.

[event_module_guid].event_package_name.target_name

Is the name of a target in the event
session, where:

e event_module_guid is the GUID
for the module that contains the
event.

e event_package_name is the
package that contains the action
object.

e target_name is the action.
Actions appear in
sys.dm_xe_objects view as
object_type 'target'.

SET { target_parameter_name = <value> [, ..n] }

Sets a target parameter. Target
parameters appear in the
sys.dm_xe_object_columns view as
column_type 'customizable' and
object_name = target_name.

o Important
If you are using the ring
buffer target, we
recommend that you set the
max_memory target
parameter to 2048 kilobytes
(KB) to help avoid possible
data truncation of the XML
output. For more
information about when to
use the different target

types, see SQL Server

Extended Events Targets.

128

http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�
http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�

DROP TARGET <event_target_specifier>

Drops the target identified by
<event_target_specifier>.
<event_target_specifier> must be
valid in the event session.

EVENT_RETENTION_MODE = {
ALLOW SINGLE EVENT LOSS |
ALLOW_MULTIPLE_EVENT_LOSS | NO_EVENT_LOSS }

Specifies the event retention mode

to use for handling event loss.

ALLOW_SINGLE_EVENT_

LOSS
An event can be lost
from the session. A
single event is only
dropped when all the
event buffers are full.
Losing a single event
when event buffers are
full allows for
acceptable SQL Server
performance
characteristics, while
minimizing the loss of
data in the processed
event stream.

ALLOW_MULTIPLE_EVEN

T_LOSS
Full event buffers
containing multiple
events can be lost from
the session. The
number of events lost is
dependent upon the
memory size allocated
to the session, the
partitioning of the
memory, and the size of
the events in the buffer.
This option minimizes
performance impact on
the server when event
buffers are quickly
filled, but large
numbers of events can

129

be lost from the
session.

NO_EVENT_LOSS

No event loss is
allowed. This option
ensures that all events
raised will be retained.
Using this option forces
all tasks that fire events
to wait until space is
available in an event
buffer. This may cause
detectable performance
issues while the event
session is active. User
connections may stall
while waiting for events
to be flushed from the
buffer.

MAX_DISPATCH_LATENCY = { seconds SECONDS |
INFINITE }

Specifies the amount of time that
events are buffered in memory
before being dispatched to event
session targets. The minimum
latency value is 1 second. However,
0 can be used to specify INFINITE
latency. By default, this value is set
to 30 seconds.

seconds SECONDS

The time, in seconds, to
wait before starting to
flush buffers to targets.
seconds is a whole
number.

INFINITE

Flush buffers to targets
only when the buffers
are full, or when the
event session closes.

j Note

MAX_DISPATCH_LATENCY =0

130

SECONDS is equivalent to
MAX_DISPATCH_LATENCY =
INFINITE.

MAX_EVENT_SIZE = size [KB | MB]

Specifies the maximum allowable
size for events. MAX_EVENT_SIZE
should only be set to allow single
events larger than MAX_MEMORY;
setting it to less than
MAX_MEMORY will raise an error.
size is a whole number and can be a
kilobyte (KB) or a megabyte (MB)
value. If size is specified in kilobytes,
the minimum allowable size is 64
KB. When MAX_EVENT_SIZE is set,
two buffers of size are created in
addition to MAX_MEMORY. This
means that the total memory used
for event buffering is
MAX_MEMORY + 2 *
MAX_EVENT_SIZE.

MEMORY_PARTITION_MODE = { NONE | PER_NODE |

PER_CPU }

Specifies the location where event
buffers are created.
NONE

A single set of buffers is
created within the SQL
Server instance.

PER_NODE A set of
buffers is
created for
each NUMA
node.

PER_CPU A set of
buffers is
created for
each CPU.

131

TRACK_CAUSALITY = { ON | OFF }

Specifies whether or not causality is
tracked. If enabled, causality allows
related events on different server
connections to be correlated
together.

STARTUP_STATE = { ON | OFF }

Specifies whether or not to start this
event session automatically when
SQL Server starts.

nNote
If STARTUP_STATE = ON, the
event session will only start if
SQL Server is stopped and
then restarted.

Term Definition

ON The event session
is started at
startup.

The event session
is not started at
startup.

O
4
o

Remarks

The ADD and DROP arguments cannot be used in the same statement.

Permissions

Requires the ALTER ANY EVENT SESSION permission.

Examples

The following example starts an event session, obtains some live session statistics, and then

adds two events to the existing session.

-- Start the event session

ALTER EVENT SESSION test session

ON SERVER

132

STATE = start

GO

-- Obtain live session statistics
SELECT * FROM sys.dm xe sessions
SELECT * FROM sys.dm xe session events
GO

-- Add new events to the session

ALTER EVENT SESSION test session ON SERVER

ADD EVENT sqglserver.database transaction begin,
ADD EVENT sqglserver.database transaction end

GO

See Also

CREATE EVENT SESSION (Transact-SQL)
DROP EVENT SESSION (Transact-SQL)
Extended Event Targets

sys.server_event sessions

sys.dm xe objects

sys.dm xe object columns

ALTER FULLTEXT CATALOG

Changes the properties of a full-text catalog.
= Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT CATALOG catalog_name

{ REBUILD [WITH ACCENT_SENSITIVITY = { ON | OFF }]
| REORGANIZE

| AS DEFAULT

}
Arguments

catalog_name

Specifies the name of the catalog to be modified. If a catalog with the specified name does

133

http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�
http://msdn.microsoft.com/en-us/library/796f3093-6a3e-4d67-8da6-b9810ae9ef5b(SQL.110)�
http://msdn.microsoft.com/en-us/library/5d944b99-b097-491b-8cbd-b0e42b459ec0(SQL.110)�
http://msdn.microsoft.com/en-us/library/d96a14f3-4284-45ff-b1fe-4858e540a013(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

not exist, Microsoft SQL Server returns an error and does not perform the ALTER operation.

REBUILD

Tells SQL Server to rebuild the entire catalog. When a catalog is rebuilt, the existing catalog is
deleted and a new catalog is created in its place. All the tables that have full-text indexing
references are associated with the new catalog. Rebuilding resets the full-text metadata in
the database system tables.

WITH ACCENT_SENSITIVITY = {ON|OFF}

Specifies if the catalog to be altered is accent-sensitive or accent-insensitive for full-text
indexing and querying.

To determine the current accent-sensitivity property setting of a full-text catalog, use the
FULLTEXTCATALOGPROPERTY function with the accentsensitivity property value against

catalog_name. If the function returns '1', the full-text catalog is accent sensitive; if the
function returns '0', the catalog is not accent sensitive.

The catalog and database default accent sensitivity are the same.

REORGANIZE

Tells SQL Server to perform a master merge, which involves merging the smaller indexes
created in the process of indexing into one large index. Merging the full-text index
fragments can improve performance and free up disk and memory resources. If there are
frequent changes to the full-text catalog, use this command periodically to reorganize the
full-text catalog.

REORGANIZE also optimizes internal index and catalog structures.

Keep in mind that, depending on the amount of indexed data, a master merge may take
some time to complete. Master merging a large amount of data can create a long running
transaction, delaying truncation of the transaction log during checkpoint. In this case, the
transaction log might grow significantly under the full recovery model. As a best practice,
ensure that your transaction log contains sufficient space for a long-running transaction
before reorganizing a large full-text index in a database that uses the full recovery model. For
more information, see Managing the Size of the Transaction Log File.

AS DEFAULT
Specifies that this catalog is the default catalog. When full-text indexes are created with no
specified catalogs, the default catalog is used. If there is an existing default full-text catalog,
setting this catalog AS DEFAULT will override the existing default.

Permissions

User must have ALTER permission on the full-text catalog, or be a member of the db_owner,
db_ddladmin fixed database roles, or sysadmin fixed server role.

134

http://msdn.microsoft.com/en-us/library/3a70e606-303f-47a8-96d4-2456a18d4297(SQL.110)�

To use ALTER FULLTEXT CATALOG AS DEFAULT, the user must have ALTER permission on
the full-text catalog and CREATE FULLTEXT CATALOG permission on the database.
Examples

The following example changes the accentsensitivity property of the default full-text
catalog ftcatalog, which is accent sensitive.

--Change to accent insensitive

USE AdventureWorks;

GO

ALTER FULLTEXT CATALOG ftCatalog

REBUILD WITH ACCENT SENSITIVITY=OFF;

GO

—-— Check Accentsensitivity

SELECT FULLTEXTCATALOGPROPERTY ('ftCatalog', 'accentsensitivity');
GO

--Returned 0, which means the catalog is not accent sensitive.

See Also

sys.fulltext catalogs (Transact-SQL)
Full-Text Search

DROP FULLTEXT CATALOG
Full-Text Search

ALTER FULLTEXT INDEX

Changes the properties of a full-text index.
=k Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT INDEX ON table_name
{ ENABLE
| DISABLE
| SET CHANGE_TRACKING [=] { MANUAL | AUTO | OFF }
| ADD (column_name
[TYPE COLUMN type_column name]
[LANGUAGE 1anguage_term]
[STATISTICAL_SEMANTICS]

135

http://msdn.microsoft.com/en-us/library/cf1489ff-4819-41fa-a62a-4ed797a16207(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[,..n])
[WITH NO POPULATION]

| ALTER COLUMN column_name
{ ADD | DROP } STATISTICAL_SEMANTICS
[WITH NO POPULATION]
| DROP (column_name [,...n])
[WITH NO POPULATION]
| START { FULL | INCREMENTAL | UPDATE } POPULATION
| {STOP | PAUSE | RESUME } POPULATION
| SET STOPLIST [=] { OFF| SYSTEM | stoplist_name }
[WITH NO POPULATION]
| SET SEARCH PROPERTY LIST [=] { OFF | property list name}
[WITH NO POPULATION]
}
(]
Arguments
table_name
Is the name of the table or indexed view that contains the column or columns included in the
full-text index. Specifying database and table owner names is optional.
ENABLE | DISABLE

Tells SQL Server whether to gather full-text index data for table_name. ENABLE activates the
full-text index; DISABLE turns off the full-text index. The table will not support full-text
queries while the index is disabled.

Disabling a full-text index allows you to turn off change tracking but keep the full-text index,
which you can reactivate at any time using ENABLE. When the full-text index is disabled, the
full-text index metadata remains in the system tables. If CHANGE_TRACKING is in the enabled
state (automatic or manual update) when the full-text index is disabled, the state of the index
freezes, any ongoing crawl stops, and new changes to the table data are not tracked or
propagated to the index.

SET CHANGE_TRACKING {MANUAL | AUTO | OFF}

Specifies whether changes (updates, deletes, or inserts) made to table columns that are
covered by the full-text index will be propagated by SQL Server to the full-text index. Data
changes through WRITETEXT and UPDATETEXT are not reflected in the full-text index, and are
not picked up with change tracking.

For information about the interaction of change tracking and WITH NO POPULATION, see "Remarks,"

136

later in this topic.

MANUAL
Specifies that the tracked changes will be propagated manually by calling the ALTER

FULLTEXT INDEX ... START UPDATE POPULATION Transact-SQL statement (manual
population). You can use SQL Server Agent to call this Transact-SQL statement periodically.

AUTO

Specifies that the tracked changes will be propagated automatically as data is modified in the
base table (automatic population). Although changes are propagated automatically, these
changes might not be reflected immediately in the full-text index. AUTO is the default.

OFF
Specifies that SQL Server will not keep a list of changes to the indexed data.

ADD | DROP column_name

Specifies the columns to be added or deleted from a full-text index. The column or columns
must be of type char, varchar, nchar, nvarchar, text, ntext, image, xml, varbinary, or
varbinary(max).

Use the DROP clause only on columns that have been enabled previously for full-text
indexing.

Use TYPE COLUMN and LANGUAGE with the ADD clause to set these properties on the
column_name. When a column is added, the full-text index on the table must be repopulated
in order for full-text queries against this column to work.

Whether the full-text index is populated after a column is added or dropped from a full-text index
depends on whether change-tracking is enabled and whether WITH NO POPULATION is specified. For
more information, see "Remarks," later in this topic.

TYPE COLUMN type_column_name

Specifies the name of a table column, type_column_name, that is used to hold the document
type for a varbinary, varbinary(max), or image document. This column, known as the type
column, contains a user-supplied file extension (.doc, .pdf, xlIs, and so forth). The type column
must be of type char, nchar, varchar, or nvarchar.

Specify TYPE COLUMN type_column_name only if column_name specifies a varbinary,
varbinary(max) or image column, in which data is stored as binary data; otherwise, SQL
Server returns an error.

At indexing time, the Full-Text Engine uses the abbreviation in the type column of each table row to
identify which full-text search filter to use for the document in column_name. The filter loads the
document as a binary stream, removes the formatting information, and sends the text from the
document to the word-breaker component. For more information, see Full-Text Search Filters.

137

http://msdn.microsoft.com/en-us/library/7ccf2ee0-9854-4253-8cca-1faed43b7095(SQL.110)�

LANGUAGE language_term
Is the language of the data stored in column_name.

language_term is optional and can be specified as a string, integer, or hexadecimal value
corresponding to the locale identifier (LCID) of a language. If language_term is specified, the
language it represents will be applied to all elements of the search condition. If no value is
specified, the default full-text language of the SQL Server instance is used.

Use the sp_configure stored procedure to access information about the default full-text
language of the SQL Server instance.

When specified as a string, language_term corresponds to the alias column value in the
syslanguages system table. The string must be enclosed in single quotation marks, as in
'language_term'. When specified as an integer, language_term is the actual LCID that
identifies the language. When specified as a hexadecimal value, language_term is Ox followed
by the hex value of the LCID. The hex value must not exceed eight digits, including leading
zZeros.

If the value is in double-byte character set (DBCS) format, SQL Server will convert it to
Unicode.

Resources, such as word breakers and stemmers, must be enabled for the language specified
as language_term. If such resources do not support the specified language, SQL Server
returns an error.

For non-BLOB and non-XML columns containing text data in multiple languages, or for cases
when the language of the text stored in the column is unknown, use the neutral (0x0)
language resource. For documents stored in XML- or BLOB-type columns, the language
encoding within the document will be used at indexing time. For example, in XML columns,
the xml:lang attribute in XML documents will identify the language. At query time, the value
previously specified in language_term becomes the default language used for full-text
queries unless language_term is specified as part of a full-text query.

STATISTICAL_SEMANTICS

Creates the additional key phrase and document similarity indexes that are part of statistical
semantic indexing. For more information, see Semantic Search.

[,...n]

Indicates that multiple columns may be specified for the ADD, ALTER, or DROP clauses. When
multiple columns are specified, separate these columns with commas.

WITH NO POPULATION

Specifies that the full-text index will not be populated after an ADD or DROP column
operation or a SET STOPLIST operation. The index will only be populated if the user executes
a START...POPULATION command.

When NO POPULATION is specified, SQL Server does not populate an index. The index is
populated only after the user gives an ALTER FULLTEXT INDEX...START POPULATION
command. When NO POPULATION is not specified, SQL Server populates the index.

138

http://msdn.microsoft.com/en-us/library/cd8faa9d-07db-420d-93f4-a2ea7c974b97(SQL.110)�

If CHANGE_TRACKING is enabled and WITH NO POPULATION is specified, SQL Server returns
an error. If CHANGE_TRACKING is enabled and WITH NO POPULATION is not specified, SQL
Server performs a full population on the index.

For more information about the interaction of change tracking and WITH NO POPULATION, see
"Remarks," later in this topic.
{ADD | DROP } STATISTICAL_SEMANTICS

Enables or disables statistical semantic indexing for the specified columns. For more
information, see Semantic Search.

START {FULL|INCREMENTAL|UPDATE} POPULATION

Tells SQL Server to begin population of the full-text index of table_name. If a full-text index
population is already in progress, SQL Server returns a warning and does not start a new
population.

FULL

Specifies that every row of the table be retrieved for full-text indexing even if the rows
have already been indexed.

INCREMENTAL

Specifies that only the modified rows since the last population be retrieved for full-text
indexing. INCREMENTAL can be applied only if the table has a column of the type
timestamp. If a table in the full-text catalog does not contain a column of the type
timestamp, the table undergoes a FULL population.

UPDATE

Specifies the processing of all insertions, updates, or deletions since the last time the
change-tracking index was updated. Change-tracking population must be enabled on a
table, but the background update index or the auto change tracking should not be turned
on.

{STOP | PAUSE | RESUME } POPULATION
Stops, or pauses any population in progress; or stops or resumes any paused population.

STOP POPULATION does not stop auto change tracking or background update index. To
stop change tracking, use SET CHANGE_TRACKING OFF.

PAUSE POPULATION and RESUME POPULATION can only be used for full populations. They
are not relevant to other population types because the other populations resume crawls from
where the crawl stopped.

SET STOPLIST { OFF| SYSTEM | stoplist_name }

Changes the full-text stoplist that is associated with the index, if any.

OFF

139

http://msdn.microsoft.com/en-us/library/cd8faa9d-07db-420d-93f4-a2ea7c974b97(SQL.110)�

Specifies that no stoplist be associated with the full-text index.

SYSTEM
Specifies that the default full-text system STOPLIST should be used for this full-text index.

stoplist_name

Specifies the name of the stoplist to be associated with the full-text index.

For more information, see Stopwords and Stoplists.

SET SEARCH PROPERTY LIST { OFF | property_list name } [WITH NO POPULATION]
Changes the search property list that is associated with the index, if any.
OFF

Specifies that no property list be associated with the full-text index. When you turn off the
search property list of a full-text index (ALTER FULLTEXT INDEX ... SET SEARCH PROPERTY
LIST OFF), property searching on the base table is no longer possible.

By default, when you turn off an existing search property list, the full-text index
automatically repopulates. If you specify WITH NO POPULATION when you turn off the
search property list, automatic repopulation does not occur. However, we recommend that
you eventually run a full population on this full-text index at your convenience.
Repopulating the full-text index removes the property-specific metadata of each dropped
search property, making the full-text index smaller and more efficient.

property_list_name
Specifies the name of the search property list to be associated with the full-text index.
Adding a search property list to a full-text index requires repopulating the index to index
the search properties that are registered for the associated search property list. If you

specify WITH NO POPULATION when adding the search property list, you will need to run
a population on the index, at an appropriate time.

4 Important
If the full-text index was previously associated with a different search it must be rebuilt property list
in order to bring the index into a consistent state. The index is truncated immediately and is empty
until the full population runs. For more information about when changing the search property list
causes rebuilding, see "Remarks," later in this topic.

.J Note

You can associate a given search property list with more than one full-text index in the same
database.

To find the search property lists on the current database

e sys.reqgistered search property lists

For more information about search property lists, see Using Property Lists to Search

140

http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�

for Document Properties.

Remarks

Interactions of Change Tracking and NO POPULATION Parameter

Whether the full-text index is populated depends on whether change-tracking is enabled and
whether WITH NO POPULATION is specified in the ALTER FULLTEXT INDEX statement. The
following table summarizes the result of their interaction.

Change Tracking WITH NO POPULATION Result

Not Enabled Not specified A full population is performed
on the index.

Not Enabled Specified No population of the index

occurs until an ALTER FULLTEXT
INDEX...START POPULATION
statement is issued.

Enabled Specified An error is raised, and the index
is not altered.

Enabled Not specified A full population is performed
on the index.

For more information about populating full-text indexes, see Full-Text Index Population.

Changing the Search Property List Causes Rebuilding the Index

The first time that a full-text index is associated with a search property list, the index must be
repopulated to index property-specific search terms. The existing index data is not truncated.

However, if you associate the full-text index with a different property list, the index is rebuilt.

Rebuilding immediately truncates the full-text index, removing all existing data, and the index

must be repopulated. While the population progresses, full-text queries on the base table search

only on the the table rows that have already been indexed by the population. The repopulated

index data will include metadata from the registered properties of the newly added search

property list.

Scenarios that cause rebuilding include:

e Switching directly to a different search property list (see "Scenario A," later in this section).

e Turning off the search property list and later associating the index with any search property
list (see "Scenario B," later in this section)

141

http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�

For more information about how full-text search works with search property lists, see
Using Search Property Lists to Search for Properties (Full-Text Search). For information
about full populations, see Full-Text Index Population.

Scenario A: Switching Directly to a Different Search Property List

1. A full-text index is created on table 1 with a search property list sp1 1:

CREATE FULLTEXT INDEX ON table 1 (column name) KEY INDEX
unique key index
WITH SEARCH PROPERTY LIST=spl 1,
CHANGE TRACKING OFF, NO POPULATION;
A full population is run on the full-text index:
ALTER FULLTEXT INDEX ON table 1 START FULL POPULATION;

The full-text index is later associated a different search property list, sp1 2, using the
following statement:

ALTER FULLTEXT INDEX ON table 1 SET SEARCH PROPERTY LIST spl 2;

This statement causes a full population, the default behavior. However, before beginning
this population, the Full-Text Engine automatically truncates the index.

Scenario B: Turning Off the Search Property List and Later Associating the Index
with Any Search Property List

1. A full-text index is created on table 1 with a search property list sp1 1, followed by an
automatic full population (the default behavior):
CREATE FULLTEXT INDEX ON table 1 (column name) KEY INDEX
unique key index
WITH SEARCH PROPERTY LIST=spl 1;
2. The search property list is turned off, as follows:
ALTER FULLTEXT INDEX ON table 1
SET SEARCH PROPERTY LIST OFF WITH NO POPULATION;
3. The full-text index is once more associated either the same search property list or a different
one.
For example the following statement re-associates the full-text index with the original search
property list, sp1 1:
ALTER FULLTEXT INDEX ON table 1 SET SEARCH PROPERTY LIST spl 1;
This statement starts a full population, the default behavior.
4 Note
The rebuild would also be required for a different search property list, such as sp1_2.
Permissions

142

http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�

The user must have ALTER permission on the table or indexed view, or be a member of the
sysadmin fixed server role, or the db_ddladmin or db_owner fixed database roles.

If SET STOPLIST is specified, the user must have REFERENCES permission on the stoplist. If SET
SEARCH PROPERTY LIST is specified, the user must have REFERENCES permission on the search
property list. The owner of the specified stoplist or search property list can grant REFERENCES
permission, if the owner has ALTER FULLTEXT CATALOG permissions.

The public is granted REFERENCES permission to the default stoplist that is shipped with
SQL Server.

Examples

A. Setting manual change tracking

The following example sets manual change tracking on the full-text index on the JobCandidate
table of the adventureworks database.

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON HumanResources.JobCandidate
SET CHANGE TRACKING MANUAL;

GO

B. Associating a property list with a full-text index

The following example associates the DocumentPropertyList property list with the full-text
index on the Production.Document table of the Adventureworks database. This ALTER
FULLTEXT INDEX statement starts a full population, which is the default behavior of the SET
SEARCH PROPERTY LIST clause.

For an example that creates the DocumentPropertyList property list, see CREATE
SEARCH PROPERTY LIST (Transact-SQL).

USE AdventureWorks;

GO
ALTER FULLTEXT INDEX ON Production.Document

SET SEARCH PROPERTY LIST DocumentPropertyList;
GO

C. Removing a search property list

The following example removes the DocumentPropertyList property list from the full-text
index on the Production.Document table of the adventureworks database. In this example,
there is no hurry for removing the properties from the index, so the WITH NO POPULATION

143

option is specified. However, property-level searching is longer allowed against this full-text
index.

USE AdventureWorks;
GO
ALTER FULLTEXT INDEX ON Production.Document
SET SEARCH PROPERTY LIST OFF WITH NO POPULATION;
GO

D. Starting a full population

The following example starts a full population on the full-text index on the JobCandidate table
of the Adventureworks database.

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON HumanResources.JobCandidate
START FULL POPULATION;

GO

See Also

sys.fulltext indexes (Transact-SQL)
CREATE FULLTEXT INDEX

DROP FULLTEXT INDEX

Full-Text Search

Full-Text Index Population

ALTER FULLTEXT STOPLIST

Inserts or deletes a stop word in the default full-text stoplist of the current database.

@ Important
CREATE FULLTEXT STOPLIST is supported only for compatibility level 100. For
compatibility levels 80 and 90, the system stoplist is always assigned to the database.

=k Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT STOPLIST stoplist_name

{
ADD [N] 'stopword’ LANGUAGE language_term
| DROP

144

http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

'stopword' LANGUAGE language_term
| ALL LANGUAGE language term
| ALL
}
Arguments

stoplist_name

Is the name of the stoplist being altered. stoplist_name can be a maximum of 128 characters.

'stopword’

Is a string that could be a word with linguistic meaning in the specified language or a token

that does not have a linguistic meaning. stopword is limited to the maximum token length

(64 characters). A stopword can be specified as a Unicode string.

LANGUAGE language_term

Specifies the language to associate with the stopword being added or dropped.

language_term can be specified as a string, integer, or hexadecimal value corresponding to

the locale identifier (LCID) of the language, as follows:

Format

Description

String

language_term corresponds to the alias
column value in the sys.syslanguages
(Transact-SQL) compatibility view. The
string must be enclosed in single quotation
marks, as in 'language_term".

Integer

language_term is the LCID of the language.

Hexadecimal

language_term is Ox followed by the
hexadecimal value of the LCID. The
hexadecimal value must not exceed eight
digits, including leading zeros. If the value
is in double-byte character set (DBCS)
format, SQL Server converts it to Unicode.

ADD 'stopword’ LANGUAGE language_term

Adds a stop word to the stoplist for the language specified by LANGUAGE language_term.

145

http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�
http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�

If the specified combination of keyword and the LCID value of the language is not unique in
the STOPLIST, an error is returned. If the LCID value does not correspond to a registered
language, an error is generated.

DROP { 'stopword’ LANGUAGE language_term | ALL LANGUAGE language_term | ALL }
Drops a stop word from the stop list.
'stopword’ LANGUAGE language_term

Drops the specified stop word for the language specified by language_term.

ALL LANGUAGE language_term

Drops all of the stop words for the language specified by language_term.

ALL

Drops all of the stop words in the stoplist.
Remarks
None.

Permissions
To designate a stoplist as the default stoplist of the database requires ALTER DATABASE

permission. To otherwise alter a stoplist requires being the stoplist owner or membership in the

db_owner or db_ddladmin fixed database roles.

Examples

The following example alters a stoplist named CombinedFunctionWordList, adding the word
‘en’, first for Spanish and then for French.

ALTER FULLTEXT STOPLIST CombinedFunctionWordList ADD 'en' LANGUAGE 'Spanish';

ALTER FULLTEXT STOPLIST CombinedFunctionWordList ADD 'en' LANGUAGE 'French';

See Also

CREATE FULLTEXT STOPLIST (Transact-SQL)
DROP FULLTEXT STOPLIST (Transact-SQL)
Noise Words

sys.fulltext stoplists (Transact-SQL)

sys.fulltext stopwords (Transact-SQL)

Configure and Manage Stopwords and Stoplists for Full-Text Search

ALTER FUNCTION

Alters an existing Transact-SQL or CLR function that was previously created by executing the
CREATE FUNCTION statement, without changing permissions and without affecting any
dependent functions, stored procedures, or triggers.

’

146

http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb69fb8f-f6d9-446e-83c0-67afd05dfba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/79787bb7-d729-448e-b56a-0a467bbb304f(SQL.110)�
http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�

=5 Transact-SQL Syntax Conventions

Syntax

Scalar Functions
ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type _schema name. | parameter data_type
[= default]}
[,.n]
]

)
RETURNS return_data_type

[WITH <function_option> [,..n]]
[AS]
BEGIN

function_body

RETURN scalar_expression

END
[;]

Inline Table-valued Functions
ALTER FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema name.]| parameter_data_type

[= default]}
[,.n]
]
)
RETURNS TABLE
[WITH <function_option> [,..n]]
[AS]

RETURN [(] select_stmt[)]
[;]

Multistatement Table-valued Functions
ALTER FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema name. | parameter_data_type

147

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[= default]}
[,.n]
]

)

RETURNS @return_variable TABLE <table_type_definition>
[WITH <function_option> [,..n]]
[AS]

BEGIN
function_body
RETURN

END

[;]

CLR Functions
ALTER FUNCTION [schema_name.] function_name
({ @parameter_name [AS] [type_schema name. | parameter_data_type
[= default]}
[,.n]
)
RETURNS { return_data_type | TABLE <clr_table_type_definition> }
[WITH <clr_function_option> [,..n 1]
[AS] EXTERNAL NAME <method_specifier>

[;]

<method_specifier>::=

assembly name.class_namemethod name

Function Options
<function_option>::=
{
[ENCRYPTION]
| [SCHEMABINDING]
| [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
| [EXECUTE_AS_Clause]

}

148

<clr_function_option>::=
}
[RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
| [EXECUTE_AS_Clause]

}

Table Type Definitions
<table_type_definition>:: =
({ <column definition> <column_constraint>
| <computed_column_definition> }
[<table_constraint>][,..n]

<clr_table_type_definition>:: =

({ column _name data_type }[,.n])

<column_definition>::=
{
{ column_name data_type }
[[DEFAULT constant_expression]
[COLLATE collation_name] | [ROWGUIDCOL]
]
| [IDENTITY [(seed , increment)]]
[<column_constraint> [..n]]
}
<column_constraint>::=
{
[NULL | NOT NULL]
{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor
| WITH (< index_option > [, ..n])
[ON {filegroup | "default" }]
| [CHECK (logical_ expression)][,..n]

149

<computed_column_definition>::=

column name AS computed column_ expression

<table constraint>::=
{
{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
(column_name [ASC | DESC][,..n])
[WITH FILLFACTOR = fillfactor
| WITH (<index_option> [, ..n])
| [CHECK (logical_ expression)][,..n]
}

<index_option>::=
{
PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor
| IGNORE_DUP_KEY = { ON | OFF }
| STATISTICS_NORECOMPUTE = { ON | OFF }
| ALLOW_ROW_LOCKS = { ON | OFF }
| ALLOW_PAGE_LOCKS ={ ON | OFF }
}
Arguments
schema_name

Is the name of the schema to which the user-defined function belongs.

function_name

Is the user-defined function to be changed.

Parentheses are required after the function name even if a parameter is not specified.
@parameter_name
Is a parameter in the user-defined function. One or more parameters can be declared.

A function can have a maximum of 2,100 parameters. The value of each declared parameter
must be supplied by the user when the function is executed, unless a default for the

150

parameter is defined.

Specify a parameter name by using an at sign (@) as the first character. The parameter name
must comply with the rules for identifiers. Parameters are local to the function; the same
parameter names can be used in other functions. Parameters can take the place only of
constants; they cannot be used instead of table names, column names, or the names of other
database objects.

ANSI_WARNINGS is not honored when passing parameters in a stored procedure, user-defined
function, or when declaring and setting variables in a batch statement. For example, if a variable is
defined as char(3), and then set to a value larger than three characters, the data is truncated to the
defined size and the INSERT or UPDATE statement succeeds.

[type_schema_name.] parameter_data_type

Is the parameter data type and optionally, the schema to which it belongs. For Transact-SQL
functions, all data types, including CLR user-defined types, are allowed except the timestamp
data type. For CLR functions, all data types, including CLR user-defined types, are allowed
except text, ntext, image, and timestamp data types. The nonscalar types cursor and table
cannot be specified as a parameter data type in either Transact-SQL or CLR functions.

If type_schema_name is not specified, the SQL Server 2005 Database Engine looks for the
parameter_data_type in the following order:

e The schema that contains the names of SQL Server system data types.
e The default schema of the current user in the current database.

e The dbo schema in the current database.

[= default]

Is a default value for the parameter. If a default value is defined, the function can be executed
without specifying a value for that parameter.

Default parameter values can be specified for CLR functions except for varchar(max) and
varbinary(max) data types.

When a parameter of the function has a default value, the keyword DEFAULT must be
specified when calling the function to retrieve the default value. This behavior is different
from using parameters with default values in stored procedures in which omitting the
parameter also implies the default value.

return_data_type

Is the return value of a scalar user-defined function. For Transact-SQL functions, all data
types, including CLR user-defined types, are allowed except the timestamp data type. For
CLR functions, all data types, including CLR user-defined types, are allowed except text,
ntext, image, and timestamp data types. The nonscalar types cursor and table cannot be
specified as a return data type in either Transact-SQL or CLR functions.

151

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

function_body

Specifies that a series of Transact-SQL statements, which together do not produce a side
effect such as modifying a table, define the value of the function. function_body is used only
in scalar functions and multistatement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that together
evaluate to a scalar value.

In multistatement table-valued functions, function_body is a series of Transact-SQL
statements that populate a TABLE return variable.

scalar_expression

Specifies that the scalar function returns a scalar value.

TABLE

Specifies that the return value of the table-valued function is a table. Only constants and
@local_variables can be passed to table-valued functions.

In inline table-valued functions, the TABLE return value is defined through a single SELECT
statement. Inline functions do not have associated return variables.

In multistatement table-valued functions, @return_variable is a TABLE variable used to store
and accumulate the rows that should be returned as the value of the function.
@return_variable can be specified only for Transact-SQL functions and not for CLR functions.

select-stmt

Is the single SELECT statement that defines the return value of an inline table-valued
function.

EXTERNAL NAME <method_specifier>assembly_name.class_name.method_name

Specifies the method of an assembly to bind with the function. assembly_name must match
an existing assembly in SQL Server in the current database with visibility on. class_name must
be a valid SQL Server identifier and must exist as a class in the assembly. If the class has a
namespace-qualified name that uses a period (.) to separate namespace parts, the class name
must be delimited by using brackets ([1) or quotation marks (" ™). method_name must be a
valid SQL Server identifier and must exist as a static method in the specified class.

By default, SQL Server cannot execute CLR code. You can create, modify, and drop database objects
that reference common language runtime modules; however, you cannot execute these references in
SQL Server until you enable the clr enabled option. To enable the option, use sp_configure.

This option is not available in a contained database.

152

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

<table_type_definition>({ <column_definition> <column_constraint> |
<computed_column_definition> } [<table_constraint>1][,...n1)

Defines the table data type for a Transact-SQL function. The table declaration includes
column definitions and column or table constraints.
< clIr_table_type_definition > ({ column_name data_type }[,..n1)
Defines the table data types for a CLR function. The table declaration includes only column
names and data types.
<function_option>::= and <clr_function_option>::=
Specifies the function will have one or more of the following options.
ENCRYPTION

Indicates that the Database Engine encrypts the catalog view columns that contains the text
of the ALTER FUNCTION statement. Using ENCRYPTION prevents the function from being
published as part of SQL Server replication. ENCRYPTION cannot be specified for CLR
functions.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references. This condition
will prevent changes to the function if other schema bound objects are referencing it.

The binding of the function to the objects it references is removed only when one of the
following actions occurs:

e The function is dropped.

e The function is modified by using the ALTER statement with the SCHEMABINDING
option not specified.

For a list of conditions that must be met before a function can be schema bound, see

EVENTDATA (Transact-SOL).

RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

Specifies the OnNULLCall attribute of a scalar-valued function. If not specified, CALLED ON
NULL INPUT is implied by default. This means that the function body executes even if NULL is
passed as an argument.

If RETURNS NULL ON NULL INPUT is specified in a CLR function, it indicates that SQL Server
can return NULL when any of the arguments it receives is NULL, without actually invoking the
body of the function. If the method specified in <method_specifier> already has a custom
attribute that indicates RETURNS NULL ON NULL INPUT, but the ALTER FUNCTION statement
indicates CALLED ON NULL INPUT, the ALTER FUNCTION statement takes precedence. The
OnNULLCall attribute cannot be specified for CLR table-valued functions.

EXECUTE AS Clause

Specifies the security context under which the user-defined function is executed. Therefore,
you can control which user account SQL Server uses to validate permissions on any database
objects referenced by the function.

153

EXECUTE AS cannot be specified for inline user-defined functions.
For more information, see EXECUTE AS Clause (Transact-SOL).

< column_definition >::=

Defines the table data type. The table declaration includes column definitions and constraints.
For CLR functions, only column_name and data_type can be specified.

column_name
Is the name of a column in the table. Column names must comply with the rules for
identifiers and must be unique in the table. column_name can consist of 1 through 128
characters.

data_type
Specifies the column data type. For Transact-SQL functions, all data types, including CLR
user-defined types, are allowed except timestamp. For CLR functions, all data types,
including CLR user-defined types, are allowed except text, ntext, image, char, varchar,
varchar(max), and timestamp.The nonscalar type cursor cannot be specified as a column
data type in either Transact-SQL or CLR functions.

DEFAULT constant_expression

Specifies the value provided for the column when a value is not explicitly supplied during an
insert. constant_expression is a constant, NULL, or a system function value. DEFAULT
definitions can be applied to any column except those that have the IDENTITY property.
DEFAULT cannot be specified for CLR table-valued functions.

COLLATE collation_name

Specifies the collation for the column. If not specified, the column is assigned the default
collation of the database. Collation name can be either a Windows collation name or a SQL
collation name. For a list of and more information, see Windows Collation Name and
SQL Collation Name.

The COLLATE clause can be used to change the collations only of columns of the char,

varchar, nchar, and nvarchar data types.

COLLATE cannot be specified for CLR table-valued functions.

ROWGUIDCOL

Indicates that the new column is a row global unique identifier column. Only one
uniqueidentifier column per table can be designated as the ROWGUIDCOL column. The
ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column.
It also does not automatically generate values for new rows inserted into the table. To
generate unique values for each column, use the NEWID function on INSERT statements. A
default value can be specified; however, NEWID cannot be specified as the default.

154

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table,
SQL Server provides a unique, incremental value for the column. Identity columns are
typically used together with PRIMARY KEY constraints to serve as the unique row identifier
for the table. The IDENTITY property can be assigned to tinyint, smallint, int, bigint,
decimal(p,0), or numeric(p,0) columns. Only one identity column can be created per table.
Bound defaults and DEFAULT constraints cannot be used with an identity column. You must
specify both the seed and increment or neither. If neither is specified, the default is (1,1).

IDENTITY cannot be specified for CLR table-valued functions.
seed

Is the integer value to be assigned to the first row in the table.

increment

Is the integer value to add to the seed value for successive rows in the table.

< column_constraint >::= and < table_constraint>::=

Defines the constraint for a specified column or table. For CLR functions, the only constraint type
allowed is NULL. Named constraints are not allowed.

NULL | NOT NULL

Determines whether null values are allowed in the column. NULL is not strictly a constraint
but can be specified just like NOT NULL. NOT NULL cannot be specified for CLR table-valued
functions.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column through a unique index. In
table-valued user-defined functions, the PRIMARY KEY constraint can be created on only one
column per table. PRIMARY KEY cannot be specified for CLR table-valued functions.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns through a
unique index. A table can have multiple UNIQUE constraints. UNIQUE cannot be specified for
CLR table-valued functions.

CLUSTERED | NONCLUSTERED

Indicate that a clustered or a nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints use CLUSTERED, and UNIQUE constraints use
NONCLUSTERED.

CLUSTERED can be specified for only one constraint. If CLUSTERED is specified for a UNIQUE
constraint and a PRIMARY KEY constraint is also specified, the PRIMARY KEY uses
NONCLUSTERED.

CLUSTERED and NONCLUSTERED cannot be specified for CLR table-valued functions.

155

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints cannot be specified for CLR table-
valued functions.

logical_expression
Is a logical expression that returns TRUE or FALSE.
<computed_column_definition>::=

Specifies a computed column. For more information about computed columns, see CREATE
TABLE (Transact-SQL).

column_name

Is the name of the computed column.

computed_column_expression

Is an expression that defines the value of a computed column.
<index_option>::=

Specifies the index options for the PRIMARY KEY or UNIQUE index. For more information about
index options, see CREATE INDEX (Transact-SQL).

PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or change. fillfactor must be an integer value from
1 to 100. The default is 0.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The default is OFF.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ALLOW _PAGE_LOCKS = { ON | OFF }
Specifies whether page locks are allowed. The default is ON.

Remarks

ALTER FUNCTION cannot be used to change a scalar-valued function to a table-valued function,
or vice versa. Also, ALTER FUNCTION cannot be used to change an inline function to a

156

multistatement function, or vice versa. ALTER FUNCTION cannot be used to change a Transact-
SQL function to a CLR function or vice-versa.

The following Service Broker statements cannot be included in the definition of a Transact-
SQL user-defined function:

e BEGIN DIALOG CONVERSATION
e END CONVERSATION

e GET CONVERSATION GROUP

e MOVE CONVERSATION

e RECEIVE

e SEND

Permissions

Requires ALTER permission on the function or on the schema. If the function specifies a user-
defined type, requires EXECUTE permission on the type.

See Also

CREATE FUNCTION (Transact-SQL)

DROP FUNCTION (Transact-SQL)

Making Schema Changes on Publication Databases

EVENTDATA (Transact-SQL)

ALTER INDEX

Modifies an existing table or view index (relational or XML) by disabling, rebuilding, or
reorganizing the index; or by setting options on the index.

=k Transact-SQL Syntax Conventions

Syntax

ALTER INDEX { index_name | ALL }
ON <object>
{ REBUILD
[[PARTITION = ALL]
[WITH (<rebuild_index_option> [,..n 1)]
| [PARTITION = partition_number
[WITH (<single_partition_rebuild_index_option>
[,.n])

157

http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

]
| DISABLE

| REORGANIZE
[PARTITION = partition_number]
[WITH (LOB_COMPACTION = { ON | OFF })]
| SET (<set_index_option> [,..n])
}
[;]

<object> :=
{
[database_name. [schema_name] . | schema_name.]

table_or_view_name

<rebuild_index_option > ::=
{
PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor
| SORT_IN_TEMPDB = { ON | OFF }
| IGNORE_DUP_KEY = { ON | OFF }
| STATISTICS_NORECOMPUTE = { ON | OFF }
| ONLINE = { ON | OFF }
| ALLOW_ROW_LOCKS = { ON | OFF }
| ALLOW_PAGE_LOCKS = { ON | OFF }
| MAXDOP = max_degree of parallelism
| DATA_COMPRESSION = { NONE | ROW | PAGE }
[ON PARTITIONS ({ <partition_number_expression> | <range> }
[,..n])]
}
<range> :=
<partition_number_expression> TO <partition_number_expression>

}
<single_partition_rebuild_index_option> ::=

158

SORT_IN_TEMPDB = { ON | OFF }
| MAXDOP = max_degree of parallelism

| DATA_COMPRESSION = { NONE | ROW | PAGE } }

}

<set_index_option>::=

{
ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

| IGNORE_DUP_KEY = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }
}
Arguments
index_name

Is the name of the index. Index names must be unique within a table or view but do not have

to be unique within a database. Index names must follow the rules of identifiers.

ALL

Specifies all indexes associated with the table or view regardless of the index type. Specifying

ALL causes the statement to fail if one or more indexes are in an offline or read-only

filegroup or the specified operation is not allowed on one or more index types. The following

table lists the index operations and disallowed index types.

Specifying ALL with this operation

Fails if the table has one or more

REBUILD WITH ONLINE = ON

XML index
Spatial index

Large object data type columns: image,
text, ntext, varchar(max), nvarchar(max),
varbinary(max), and xml

REBUILD PARTITION = partition_number

Nonpartitioned index, XML index, spatial
index, or disabled index

REORGANIZE

Indexes with ALLOW_PAGE_LOCKS set to
OFF

REORGANIZE PARTITION =
partition_number

Nonpartitioned index, XML index, spatial
index, or disabled index

159

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

IGNORE_DUP_KEY = ON Spatial index
XML index

ONLINE = ON Spatial index
XML index

If ALL is specified with PARTITION = partition_number, all indexes must be aligned. This
means that they are partitioned based on equivalent partition functions. Using ALL with
PARTITION causes all index partitions with the same partition_number to be rebuilt or
reorganized. For more information about partitioned indexes, see Partitioned Tables and
Indexes.

database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_or_view_name
Is the name of the table or view associated with the index. To display a report of the indexes
on an object, use the sys.indexes catalog view.

REBUILD [WITH (<rebuild_index_option> [,... n])]

Specifies the index will be rebuilt using the same columns, index type, uniqueness attribute,
and sort order. This clause is equivalent to DBCC DBREINDEX. REBUILD enables a
disabled index. Rebuilding a clustered index does not rebuild associated nonclustered

indexes unless the keyword ALL is specified. If index options are not specified, the existing
index option values stored in sys.indexes are applied. For any index option whose value is
not stored in sys.indexes, the default indicated in the argument definition of the option
applies.

When you rebuild an XML index or a spatial index, the options ONLINE = ON and
IGNORE_DUP_KEY = ON are not valid.

If ALL is specified and the underlying table is a heap, the rebuild operation has no effect on
the table. Any nonclustered indexes associated with the table are rebuilt.

The rebuild operation can be minimally logged if the database recovery model is set to either
bulk-logged or simple.

When you rebuild a primary XML index, the underlying user table is unavailable for the duration of the

index operation.

PARTITION

Specifies that only one partition of an index will be rebuilt or reorganized. PARTITION cannot

160

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/6e929d09-ccb5-4855-a6af-b616022bc8f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

be specified if index_name is not a partitioned index.

PARTITION = ALL rebuilds all partitions.

A Warning
Creating and rebuilding nonaligned indexes on a table with more than 1,000 partitions is possible, but
is not supported. Doing so may cause degraded performance or excessive memory consumption
during these operations. We recommend using only aligned indexes when the number of partitions
exceed 1,000.

partition_number

Is the partition number of a partitioned index that is to be rebuilt or reorganized.
partition_number is a constant expression that can reference variables. These include user-
defined type variables or functions and user-defined functions, but cannot reference a
Transact-SQL statement. partition_number must exist or the statement fails.

WITH (<single_partition_rebuild_index_option>)
SORT_IN_TEMPDB, MAXDOP, and DATA_COMPRESSION are the options that can be specified

when you rebuild a single partition (PARTITION = n). XML indexes cannot be specified in a
single partition rebuild operation.

Rebuilding a partitioned index cannot be performed online. The entire table is locked during
this operation.

DISABLE

Marks the index as disabled and unavailable for use by the Database Engine. Any index can
be disabled. The index definition of a disabled index remains in the system catalog with no
underlying index data. Disabling a clustered index prevents user access to the underlying
table data. To enable an index, use ALTER INDEX REBUILD or CREATE INDEX WITH
DROP_EXISTING. For more information, see Disable Indexes and Constraints and
Enable Indexes and Constraints.

REORGANIZE

Specifies the index leaf level will be reorganized. ALTER INDEX REORGANIZE statement is
always performed online. This means long-term blocking table locks are not held and queries
or updates to the underlying table can continue during the ALTER INDEX REORGANIZE
transaction. REORGANIZE cannot be specified for a disabled index or an index with
ALLOW_PAGE_LOCKS set to OFF.

WITH (LOB_COMPACTION = { ON | OFF })

Specifies that all pages that contain large object (LOB) data are compacted. The LOB data
types are image, text, ntext, varchar(max), nvarchar(max), varbinary(max), and xml.
Compacting this data can improve disk space use. The default is ON.

ON
All pages that contain large object data are compacted.

Reorganizing a specified clustered index compacts all LOB columns that are contained in

161

http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/c55c8865-322e-4ab0-ba04-ea1f56735353(SQL.110)�

the clustered index. Reorganizing a nonclustered index compacts all LOB columns that are
nonkey (included) columns in the index.

When ALL is specified, all indexes that are associated with the specified table or view are
reorganized, and all LOB columns that are associated with the clustered index, underlying
table, or nonclustered index with included columns are compacted.

OFF

Pages that contain large object data are not compacted.

OFF has no effect on a heap.
The LOB_COMPACTION clause is ignored if LOB columns are not present.

SET (<set_index option> [,... n])

Specifies index options without rebuilding or reorganizing the index. SET cannot be specified
for a disabled index.

PAD_INDEX = { ON | OFF }
Specifies index padding. The default is OFF.
ON

The percentage of free space that is specified by FILLFACTOR is applied to the
intermediate-level pages of the index. If FILLFACTOR is not specified at the same time
PAD_INDEX is set to ON, the fill factor value stored in sys.indexes is used.

OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity. This leaves sufficient space for at

least one row of the maximum size that the index can have, based on the set of keys on
the intermediate pages.

For more information, see CREATE INDEX (Transact-SOL).

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level

of each index page during index creation or alteration. fillfactor must be an integer value
from 1 to 100. The default is O.

Fill factor values 0 and 100 are the same in all respects.

An explicit FILLFACTOR setting applies only when the index is first created or rebuilt. The

Database Engine does not dynamically keep the specified percentage of empty space in the
pages. For more information, see CREATE INDEX.

To view the fill factor setting, use sys.indexes.

4 Important

Creating or altering a clustered index with a FILLFACTOR value affects the amount of storage space
the data occupies, because the Database Engine redistributes the data when it creates the clustered

162

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

index.

SORT_IN_TEMPDB = { ON | OFF }
Specifies whether to store the sort results in tempdb. The default is OFF.
ON

The intermediate sort results that are used to build the index are stored in tempdb. If
tempdb is on a different set of disks than the user database, this may reduce the time
needed to create an index. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

If a sort operation is not required, or if the sort can be performed in memory, the
SORT_IN_TEMPDB option is ignored.

For more information, see tempdb and Index Creation.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The default is OFF.

ON
A warning message will occur when duplicate key values are inserted into a unique index.
Only the rows violating the uniqueness constraint will fail.

OFF
An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,

XML indexes, spatial indexes, and filtered indexes.

To view IGNORE_DUP_KEY, use sys.indexes.

In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH

IGNORE_DUP_KEY = ON.

STATISTICS_NORECOMPUTE = { ON | OFF }
Specifies whether distribution statistics are recomputed. The default is OFF.
ON

Out-of-date statistics are not automatically recomputed.

OFF

Automatic statistics updating are enabled.

To restore automatic statistics updating, set the STATISTICS_NORECOMPUTE to OFF, or
execute UPDATE STATISTICS without the NORECOMPUTE clause.

163

http://msdn.microsoft.com/en-us/library/754a003f-fe51-4d10-975a-f6b8c04ebd35(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

4 Important
Disabling automatic recomputation of distribution statistics may prevent the query optimizer from
picking optimal execution plans for queries that involve the table.

ONLINE = { ON | OFF }
Specifies whether underlying tables and associated indexes are available for queries and data

modification during the index operation. The default is OFF.

For an XML index or spatial index, only ONLINE = OFF is supported, and if ONLINE is set to
ON an error is raised.

Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source
table. This allows queries or updates to the underlying table and indexes to continue. At
the start of the operation, a Shared (S) lock is very briefly held on the source object. At the
end of the operation, an S lock is very briefly held on the source if a nonclustered index is
being created, or an SCH-M (Schema Modification) lock is acquired when a clustered index
is created or dropped online, or when a clustered or nonclustered index is being rebuilt.
ONLINE cannot be set to ON when an index is being created on a local temporary table.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered, spatial, or XML index, or rebuilds or drops a
nonclustered index, acquires a Schema modification (Sch-M) lock on the table. This
prevents all user access to the underlying table for the duration of the operation. An offline
index operation that creates a nonclustered index acquires a Shared (S) lock on the table.
This prevents updates to the underlying table but allows read operations, such as SELECT
statements.

For more information, see How Online Index Operations Work.

Indexes, including indexes on global temp tables, can be rebuilt online with the following
exceptions:

e XML indexes

e Indexes on local temp tables

e Asubset of a partitioned index (An entire partitioned index can be rebuilt online.)
e Clustered indexes if the underlying table contains LOB data types

e Nonclustered indexes that are defined with the image, ntext, and text data type
columns

164

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�

Nonclustered indexes can be rebuilt online if the table contains LOB data types but none of
these columns are used in the index definition as either key or nonkey columns.
ALLOW_ROW_LOCKS = { ON | OFF }
Specifies whether row locks are allowed. The default is ON.
ON
Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.
OFF

Row locks are not used.

ALLOW _PAGE_LOCKS = { ON | OFF }
Specifies whether page locks are allowed. The default is ON.
ON
Page locks are allowed when you access the index. The Database Engine determines when
page locks are used.
OFF

Page locks are not used.

An index cannot be reorganized when ALLOW_PAGE_LOCKS is set to OFF.

MAXDOP = max_degree_of parallelism

Overrides the max degree of parallelism configuration option for the duration of the index
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option. Use MAXDOP to limit the number of processors used in a
parallel plan execution. The maximum is 64 processors.

4 Important

Although the MAXDOP option is syntactically supported for all XML indexes, for a spatial index or a

primary XML index, ALTER INDEX currently uses only a single processor.
max_degree_of_parallelism can be:
1
Suppresses parallel plan generation.
>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

165

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�

Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the

Editions of SQL Server 2012.

DATA_COMPRESSION

Specifies the data compression option for the specified index, partition number, or range of

partitions. The options are as follows:

NONE

Index or specified partitions are not compressed.

ROW

Index or specified partitions are compressed by using row compression.

PAGE

Index or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,...n])
Specifies the partitions to which the DATA_COMPRESSION setting applies. If the index is not
partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option applies to all partitions of a
partitioned index.

<partition_number_expression> can be specified in the following ways:

Provide the number for a partition, for example: ON PARTITIONS (2).

Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

Provide both ranges and individual partitions: ON PARTITIONS (2, 4, 6 TO 8).

<range> can be specified as partition numbers separated by the word TO, for example: ON
PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

REBUILD WITH

(

DATA COMPRESSION
DATA COMPRESSION

DATA COMPRESSION

)

NONE ON PARTITIONS (1),

ROW ON PARTITIONS (2, 4, 6 TO 8),

PAGE ON PARTITIONS (3, 5)

166

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

Remarks

ALTER INDEX cannot be used to repartition an index or move it to a different filegroup. This
statement cannot be used to modify the index definition, such as adding or deleting columns or
changing the column order. Use CREATE INDEX with the DROP_EXISTING clause to perform
these operations.

When an option is not explicitly specified, the current setting is applied. For example, if a
FILLFACTOR setting is not specified in the REBUILD clause, the fill factor value stored in the
system catalog will be used during the rebuild process. To view the current index option

settings, use sys.indexes.

The values for ONLINE, MAXDOP, and SORT_IN_TEMPDB are not stored in the system
catalog. Unless specified in the index statement, the default value for the option is used.

On multiprocessor computers, just like other queries do, ALTER INDEX REBUILD automatically
uses more processors to perform the scan and sort operations that are associated with
modifying the index. When you run ALTER INDEX REORGANIZE, with or without
LOB_COMPACTION, the max degree of parallelism value is a single threaded operation. For
more information, see Configuring Parallel Index Operations.

An index cannot be reorganized or rebuilt if the filegroup in which it is located is offline or set to
read-only. When the keyword ALL is specified and one or more indexes are in an offline or read-
only filegroup, the statement fails.

Rebuilding Indexes

Rebuilding an index drops and re-creates the index. This removes fragmentation, reclaims disk
space by compacting the pages based on the specified or existing fill factor setting, and
reorders the index rows in contiguous pages. When ALL is specified, all indexes on the table are
dropped and rebuilt in a single transaction. FOREIGN KEY constraints do not have to be dropped
in advance. When indexes with 128 extents or more are rebuilt, the Database Engine defers the
actual page deallocations, and their associated locks, until after the transaction commits.

Rebuilding or reorganizing small indexes often does not reduce fragmentation. The pages of
small indexes are stored on mixed extents. Mixed extents are shared by up to eight objects, so
the fragmentation in a small index might not be reduced after reorganizing or rebuilding it.

In SQL Server 2012, statistics are not created by scanning all the rows in the table when a
partitioned index is created or rebuilt. Instead, the query optimizer uses the default sampling
algorithm to generate statistics. To obtain statistics on partitioned indexes by scanning all the
rows in the table, use CREATE STATISTICS or UPDATE STATISTICS with the FULLSCAN clause.

In earlier versions of SQL Server, you could sometimes rebuild a nonclustered index to correct
inconsistencies caused by hardware failures. In SQL Server 2008 and later, you may still be able
to repair such inconsistencies between the index and the clustered index by rebuilding a
nonclustered index offline. However, you cannot repair nonclustered index inconsistencies by
rebuilding the index online, because the online rebuild mechanism will use the existing
nonclustered index as the basis for the rebuild and thus persist the inconsistency. Rebuilding the

167

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�

index offline, by contrast, will force a scan of the clustered index (or heap) and so remove the
inconsistency. As with earlier versions, we recommend recovering from inconsistencies by
restoring the affected data from a backup; however, you may be able to repair the index
inconsistencies by rebuilding the nonclustered index offline. For more information, see DBCC
CHECKDB (Transact-SQL).

Reorganizing Indexes

Reorganizing an index uses minimal system resources. It defragments the leaf level of clustered
and nonclustered indexes on tables and views by physically reordering the leaf-level pages to
match the logical, left to right, order of the leaf nodes. Reorganizing also compacts the index
pages. Compaction is based on the existing fill factor value. To view the fill factor setting, use
sys.indexes.

When ALL is specified, relational indexes, both clustered and nonclustered, and XML indexes on
the table are reorganized. Some restrictions apply when specifying ALL, see the definition for
ALL in the Arguments section.

For more information, see Reorganizing and Rebuilding Indexes.

Disabling Indexes

Disabling an index prevents user access to the index, and for clustered indexes, to the
underlying table data. The index definition remains in the system catalog. Disabling a
nonclustered index or clustered index on a view physically deletes the index data. Disabling a
clustered index prevents access to the data, but the data remains unmaintained in the B-tree
until the index is dropped or rebuilt. To view the status of an enabled or disabled index, query
the is_disabled column in the sys.indexes catalog view.

If a table is in a transactional replication publication, you cannot disable any indexes that are
associated with primary key columns. These indexes are required by replication. To disable an
index, you must first drop the table from the publication. For more information, see Publishing
Data and Database Objects.

Use the ALTER INDEX REBUILD statement or the CREATE INDEX WITH DROP_EXISTING
statement to enable the index. Rebuilding a disabled clustered index cannot be performed with
the ONLINE option set to ON. For more information, see Disable Indexes and Constraints.

Setting Options
You can set the options ALLOW_ROW_LOCKS, ALLOW_PAGE_LOCKS, IGNORE_DUP_KEY and
STATISTICS_NORECOMPUTE for a specified index without rebuilding or reorganizing that index.

The modified values are immediately applied to the index. To view these settings, use
sys.indexes. For more information, see Setting Index Options.

Row and Page Locks Options

When ALLOW_ROW_LOCKS = ON and ALLOW_PAGE_LOCK = ON, row-level, page-level, and
table-level locks are allowed when you access the index. The Database Engine chooses the
appropriate lock and can escalate the lock from a row or page lock to a table lock.

168

http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a28c684a-c4e9-4b24-a7ae-e248808b31e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/d986032c-3387-4de1-a435-3ec5e82185a2(SQL.110)�
http://msdn.microsoft.com/en-us/library/d986032c-3387-4de1-a435-3ec5e82185a2(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/7969af33-e94c-41f7-ab89-9d9a2747cd5c(SQL.110)�

When ALLOW_ROW_LOCKS = OFF and ALLOW_PAGE_LOCK = OFF, only a table-level lock is
allowed when you access the index.

If ALL is specified when the row or page lock options are set, the settings are applied to all
indexes. When the underlying table is a heap, the settings are applied in the following ways:

ALLOW_ROW_LOCKS = ON or OFF To the heap and any associated
nonclustered indexes.

ALLOW_PAGE_LOCKS = ON To the heap and any associated
nonclustered indexes.

ALLOW_PAGE_LOCKS = OFF Fully to the nonclustered indexes. This

means that all page locks are not allowed
on the nonclustered indexes. On the heap,
only the shared (S), update (U) and
exclusive (X) locks for the page are not
allowed. The Database Engine can still
acquire an intent page lock (IS, IU or IX) for
internal purposes.

Online Index Operations

When rebuilding an index and the ONLINE option is set to ON, the underlying objects, the
tables and associated indexes, are available for queries and data modification. Exclusive table
locks are held only for a very short amount of time during the alteration process.

Reorganizing an index is always performed online. The process does not hold locks long term
and, therefore, does not block queries or updates that are running.

You can perform concurrent online index operations on the same table only when doing the
following:

e Creating multiple nonclustered indexes.
e Reorganizing different indexes on the same table.
e Reorganizing different indexes while rebuilding nonoverlapping indexes on the same table.

All other online index operations performed at the same time fail. For example, you cannot
rebuild two or more indexes on the same table concurrently, or create a new index while
rebuilding an existing index on the same table.

For more information, see Performing Index Operations Online.

Spatial Index Restrictions

When you rebuild a spatial index, the underlying user table is unavailable for the duration of the
index operation because the spatial index holds a schema lock.

169

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�

The PRIMARY KEY constraint in the user table cannot be modified while a spatial index is

defined on a column of that table. To change the PRIMARY KEY constraint, first drop every
spatial index of the table. After modifying the PRIMARY KEy constraint, you can re-create each of
the spatial indexes.

In a single partition rebuild operation, you cannot specify any spatial indexes. However, you can
specify spatial indexes in a complete partition rebuild.

To change options that are specific to a spatial index, such as BOUNDING_BOX or GRID, you can
either use a CREATE SPATIAL INDEX statement that specifies DROP_EXISTING = ON, or drop the
spatial index and create a new one. For an example, see CREATE SPATIAL INDEX (Transact-SQL).

Columnstore Index Restrictions

Except for the REBUILD option, an xVelocity memory optimized columnstore index cannot be
altered. Drop and recreate the columnstore index instead.

Data Compression
For a more information about data compression, see Creating Compressed Tables and Indexes.

To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp estimate data compression savings stored procedure.

The following restrictions apply to partitioned indexes:

e When you use ALTER INDEX ALL ..., you cannot change the compression setting of a single
partition if the table has nonaligned indexes.

e The ALTER INDEX <index> ... REBUILD PARTITION ... syntax rebuilds the specified partition of
the index.

e The ALTER INDEX <index> ... REBUILD WITH ... syntax rebuilds all partitions of the index.

Statistics

When you execute ALTER INDEX ALL ... on a table, only the statistics associates with indexes
are updated. Automatic or manual statistics created on the table (instead of an index) are not
updated.

Permissions

To execute ALTER INDEX, at a minimum, ALTER permission on the table or view is required.

Examples

A. Rebuilding an index

The following example rebuilds a single index on the Employee table.

USE AdventureWorks2012;

GO

ALTER INDEX PK Employee BusinessEntityID ON HumanResources.Employee
REBUILD;

GO

170

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

B. Rebuilding all indexes on a table and specifying options

The following example specifies the keyword aLL. This rebuilds all indexes associated with the
table. Three options are specified.

USE AdventureWorks2012;

GO

ALTER INDEX ALL ON Production.Product

REBUILD WITH (FILLFACTOR = 80, SORT IN TEMPDB = ON,
STATISTICS NORECOMPUTE = ON);

GO

C. Reorganizing an index with LOB compaction

The following example reorganizes a single clustered index. Because the index contains a LOB
data type in the leaf level, the statement also compacts all pages that contain the large object
data. Note that specifying the WITH (LOB_COMPACTION) option is not required because the
default value is ON.

USE AdventureWorks2012;

GO

ALTER INDEX PK ProductPhoto ProductPhotoID ON Production.ProductPhoto
REORGANIZE ;

GO

D. Setting options on an index

The following example sets several options on the index
AK SalesOrderHeader SalesOrderNumber

USE AdventureWorks2012;
GO
ALTER INDEX AK SalesOrderHeader SalesOrderNumber ON

Sales.SalesOrderHeader

SET (
STATISTICS NORECOMPUTE = ON,
IGNORE DUP KEY = ON,
ALLOW PAGE LOCKS = ON
)
GO

171

E. Disabling an index

The following example disables a nonclustered index on the Employee table.

USE AdventureWorks2012;

GO

ALTER INDEX IX Employee OrganizationNode ON HumanResources.Employee
DISABLE ;

GO

F. Disabling constraints

The following example disables a PRIMARY KEY constraint by disabling the PRIMARY KEY inde
The FOREIGN KEY constraint on the underlying table is automatically disabled and warning
message is displayed.

USE AdventureWorks2012;

GO

ALTER INDEX PK Department DepartmentID ON HumanResources.Department
DISABLE ;

GO

The result set returns this warning message.

Warning: Foreign key 'FK EmployeeDepartmentHistory Department DepartmentID'

on table 'EmployeeDepartmentHistory' referencing table 'Department'

X.

was disabled as a result of disabling the index 'PK Department DepartmentID'.

G. Enabling constraints

The following example enables the PRIMARY KEY and FOREIGN KEY constraints that were
disabled in Example F.

The PRIMARY KEY constraint is enabled by rebuilding the PRIMARY KEY index.

USE AdventureWorks2012;

GO

ALTER INDEX PK Department DepartmentID ON HumanResources.Department
REBUILD ;

GO

The FOREIGN KEY constraint is then enabled.

172

ALTER TABLE HumanResources.EmployeeDepartmentHistory
CHECK CONSTRAINT FK EmployeeDepartmentHistory Department DepartmentID;
GO

H. Rebuilding a partitioned index

The following example rebuilds a single partition, partition number 5, of the partitioned index
IX TransactionHistory TransactionDate.

USE AdventureWorks;

GO

-- Verify the partitioned indexes.
SELECT *

FROM sys.dm db index physical stats
(DB_ID(),OBJECT ID(N'Production.TransactionHistory'), NULL , NULL, NULL);

GO

--Rebuild only partition 5.

ALTER INDEX IX TransactionHistory TransactionDate
ON Production.TransactionHistory

REBUILD Partition = 5;

GO

I. Changing the compression setting of an index

The following example rebuilds an index on a nonpartitioned table.

ALTER INDEX IX INDEX1

ON T1

REBUILD

WITH (DATA COMPRESSION = PAGE)

GO

For additional data compression examples, see Creating Compressed Tables and Indexes.

See Also

CREATE INDEX

CREATE SPATIAL INDEX (Transact-SQL)
CREATE XML INDEX (Transact-SQL)
DROP INDEX (Transact-SQL)

Disable Indexes and Constraints

Indexes on xml Type columns

173

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�

Performing Index Operations Online

Reorganizing and Rebuilding Indexes

sys.dm_db index physical stats
EVENTDATA

ALTER LOGIN

Changes the properties of a SQL Server login account.
= Transact-SQL Syntax Conventions

Syntax

ALTER LOGIN login_name
{
<status_option>
| WITH <set_option> [,...]
| <cryptographic_credential_option>

}

<status_option> ::=
ENABLE | DISABLE

<set_option> =
PASSWORD = 'password' | hashed_password HASHED
[
OLD_PASSWORD = 'oldpassword'
| <password_option> [<password_option>]
]
| DEFAULT_DATABASE = database
| DEFAULT_LANGUAGE = language
| NAME = login_name
| CHECK_POLICY = { ON | OFF }
| CHECK_EXPIRATION = { ON | OFF }
| CREDENTIAL = credential name
| NO CREDENTIAL

<password_option> ::=

174

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�
http://msdn.microsoft.com/en-us/library/a28c684a-c4e9-4b24-a7ae-e248808b31e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/d294dd8e-82d5-4628-aa2d-e57702230613(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

MUST_CHANGE | UNLOCK
<cryptographic_credentials_option> ::=
ADD CREDENTIAL credential_ name
| DROP CREDENTIAL credential name

Arguments

login_name
Specifies the name of the SQL Server login that is being changed. Domain logins must be
enclosed in brackets in the format [domain\user].

ENABLE | DISABLE

Enables or disables this login.

PASSWORD = 'password’
Applies only to SQL Server logins. Specifies the password for the login that is being changed.
Passwords are case-sensitive.

PASSWORD = hashed_password
Applies to the HASHED keyword only. Specifies the hashed value of the password for the
login that is being created.

HASHED
Applies to SQL Server logins only. Specifies that the password entered after the PASSWORD
argument is already hashed. If this option is not selected, the password is hashed before
being stored in the database. This option should only be used for login synchronization
between two servers. Do not use the HASHED option to routinely change passwords.

OLD_PASSWORD = 'oldpassword’
Applies only to SQL Server logins. The current password of the login to which a new
password will be assigned. Passwords are case-sensitive.

MUST_CHANGE
Applies only to SQL Server logins. If this option is included, SQL Server will prompt for an
updated password the first time the altered login is used.

DEFAULT_DATABASE = database

Specifies a default database to be assigned to the login.

DEFAULT_LANGUAGE = language
Specifies a default language to be assigned to the login.
NAME = login_name

The new name of the login that is being renamed. If this is a Windows login, the SID of the
Windows principal corresponding to the new name must match the SID associated with the

175

login in SQL Server. The new name of a SQL Server login cannot contain a backslash
character (\).
CHECK_EXPIRATION = { ON | OFF }

Applies only to SQL Server logins. Specifies whether password expiration policy should be
enforced on this login. The default value is OFF.

CHECK_POLICY = { ON | OFF }

Applies only to SQL Server logins. Specifies that the Windows password policies of the
computer on which SQL Server is running should be enforced on this login. The default value
is ON.

CREDENTIAL = credential_name

The name of a credential to be mapped to a SQL Server login. The credential must already
exist in the server. For more information see EVENTDATA (Transact-SQL). A credential
cannot be mapped to the sa login.

NO CREDENTIAL
Removes any existing mapping of the login to a server credential. For more information see
Credentials.

UNLOCK
Applies only to SQL Server logins. Specifies that a login that is locked out should be
unlocked.

ADD CREDENTIAL

Adds an Extensible Key Management (EKM) provider credential to the login. For more
information, see Understanding Extensible Key Management (EKM).

DROP CREDENTIAL

Removes an Extensible Key Management (EKM) provider credential to the login. For more
information see Understanding Extensible Key Management (EKM).

Remarks

When CHECK_POLICY is set to ON, the HASHED argument cannot be used.

When CHECK_POLICY is changed to ON, the following behavior occurs:

e CHECK_EXPIRATION is also set to ON, unless it is explicitly set to OFF.

e The password history is initialized with the value of the current password hash.
When CHECK_POLICY is changed to OFF, the following behavior occurs:

e CHECK_EXPIRATION is also set to OFF.

e The password history is cleared.

e The value of lockout_time is reset.

If MUST_CHANGE is specified, CHECK_EXPIRATION and CHECK_POLICY must be set to ON.

Otherwise, the statement will fail.

176

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

If CHECK_POLICY is set to OFF, CHECK_EXPIRATION cannot be set to ON. An ALTER LOGIN
statement that has this combination of options will fail.

You cannot use ALTER_LOGIN with the DISABLE argument to deny access to a Windows group.
For example, ALTER_LOGIN [domain\group] DISABLE will return the following error message:

"Msg 15151, Level 16, State 1, Line 1

"Cannot alter the login 'Domain\Group', because it does not exist or you do not have
permission.”

This is by design.

Permissions

Requires ALTER ANY LOGIN permission.

If the CREDENTIAL option is used, also requires ALTER ANY CREDENTIAL permission.

If the login that is being changed is a member of the sysadmin fixed server role or a grantee of
CONTROL SERVER permission, also requires CONTROL SERVER permission when making the
following changes:

e Resetting the password without supplying the old password.

e Enabling MUST_CHANGE, CHECK_POLICY, or CHECK_EXPIRATION.

e Changing the login name.

e Enabling or disabling the login.

e Mapping the login to a different credential.

A principal can change the password, default language, and default database for its own login.

Examples

A. Enabling a disabled login
The following example enables the login Marys5.
ALTER LOGIN Mary5 ENABLE;

B. Changing the password of a login
The following example changes the password of login Mary5 to a strong password.

ALTER LOGIN Mary5 WITH PASSWORD = '<enterStrongPasswordHere>';

C. Changing the name of a login
The following example changes the name of login Mary5 to John2.

ALTER LOGIN Mary5 WITH NAME = John2;

D. Mapping a login to a credential
The following example maps the login John2 to the credential Custodian04.

ALTER LOGIN John2 WITH CREDENTIAL = Custodian04;

E. Mapping a login to an Extensible Key Management credential

177

The following example maps the login Mary5 to the EKM credential EkMProviderl.
ALTER LOGIN Mary5
ADD CREDENTIAL EKMProviderl;

GO

F. Unlocking a login

To unlock a SQL Server login, execute the following statement, replacing **** with the desired
account password.

ALTER LOGIN [Mary5] WITH PASSWORD = '****' UNLOCK ;
GO

To unlock a login without changing the password, turn the check policy off and then on again.

ALTER LOGIN [Mary5] WITH CHECK POLICY = OFF;
ALTER LOGIN [Mary5] WITH CHECK POLICY = ON;
GO

G. Changing the password of a login using HASHED

The following example changes the password of the TestUser login to an already hashed value.

ALTER LOGIN TestUser WITH
PASSWORD = 0x01000CF35567C60BFB41EBDE4CF700A985A13D773D6B45B90900 HASHED ;
GO

See Also

Credentials

CREATE LOGIN (Transact-SQL)

DROP LOGIN (Transact-SQL)

CREATE CREDENTIAL (Transact-SQL)

EVENTDATA (Transact-SQL)

Understanding Extensible Key Management (EKM)

ALTER MASTER KEY

Changes the properties of a database master key.
= Transact-SQL Syntax Conventions

Syntax

ALTER MASTER KEY <alter_option>

178

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<alter_option> ::=
<regenerate_option> | <encryption_option>

<regenerate_option> ::=
[FORCE] REGENERATE WITH ENCRYPTION BY PASSWORD = 'password'

<encryption_option> ::=
ADD ENCRYPTION BY { SERVICE MASTER KEY | PASSWORD = 'password' }

|
DROP ENCRYPTION BY { SERVICE MASTER KEY | PASSWORD = 'password' }

Arguments
PASSWORD = 'password’

Specifies a password with which to encrypt or decrypt the database master key. password
must meet the Windows password policy requirements of the computer that is running the
instance of SQL Server.

Remarks

The REGENERATE option re-creates the database master key and all the keys it protects. The
keys are first decrypted with the old master key, and then encrypted with the new master key.
This resource-intensive operation should be scheduled during a period of low demand, unless
the master key has been compromised.

SQL Server 2012 uses the AES encryption algorithm to protect the service master key (SMK) and
the database master key (DMK). AES is a newer encryption algorithm than 3DES used in earlier
versions. After upgrading an instance of the Database Engine to SQL Server 2012 the SMK and
DMK should be regenerated in order to upgrade the master keys to AES. For more information
about regenerating the SMK, see ALTER SERVICE MASTER KEY (Transact-SQL).

When the FORCE option is used, key regeneration will continue even if the master key is
unavailable or the server cannot decrypt all the encrypted private keys. If the master key cannot
be opened, use the RESTORE MASTER KEY statement to restore the master key from a backup.
Use the FORCE option only if the master key is irretrievable or if decryption fails. Information
that is encrypted only by an irretrievable key will be lost.

The DROP ENCRYPTION BY SERVICE MASTER KEY option removes the encryption of the
database master key by the service master key.

ADD ENCRYPTION BY SERVICE MASTER KEY causes a copy of the master key to be encrypted
using the service master key and stored in both the current database and in master.

Permissions

Requires CONTROL permission on the database. If the database master key has been encrypted
with a password, knowledge of that password is also required.

179

http://msdn.microsoft.com/en-us/library/70ceb951-31a2-4fc4-a0c1-e6c18eeb3ae7(SQL.110)�

Examples

The following example creates a new database master key for adventureworks and reencrypts
the keys below it in the encryption hierarchy.

USE AdventureWorks2012;

ALTER MASTER KEY REGENERATE WITH ENCRYPTION BY PASSWORD =
'dsjdkf1J435907NnmM#sX003"';

GO

See Also

Detaching and Attaching Databases
OPEN MASTER KEY (Transact-SQL)
CLOSE MASTER KEY (Transact-SQL)
BACKUP MASTER KEY (Transact-SQL)
RESTORE MASTER KEY (Transact-SQL)
DROP MASTER KEY (Transact-SQL)
Encryption Hierarchy

CREATE DATABASE (Transact-SQL)
Detaching and Attaching a Database

ALTER MESSAGE TYPE

Changes the properties of a message type.
.= Transact-SQL Syntax Conventions

Syntax

ALTER MESSAGE TYPE message_type name
VALIDATION =
{ NONE
| EMPTY
| WELL_FORMED_XML
| VALID_XML WITH SCHEMA COLLECTION schema_collection_name }
[:]
Arguments
message_type_name

The name of the message type to change. Server, database, and schema names cannot be
specified.

180

http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb04ef7a-9f3a-437e-a6f9-ba0204082cb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/0e25fe22-2536-4d7e-ba4a-1921e880f367(SQL.110)�
http://msdn.microsoft.com/en-us/library/70ceb951-31a2-4fc4-a0c1-e6c18eeb3ae7(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

VALIDATION

Specifies how Service Broker validates the message body for messages of this type.

NONE
No validation is performed. The message body might contain any data, or might be NULL.

EMPTY
The message body must be NULL.

WELL_FORMED_XML

The message body must contain well-formed XML.

VALID_XML WITH_SCHEMA = schema_collection_name

The message body must contain XML that complies with a schema in the specified schema
collection. The schema_collection_name must be the name of an existing XML schema
collection.

Remarks

Changing the validation of a message type does not affect messages that have already been
delivered to a queue.

To change the AUTHORIZATION for a message type, use the ALTER AUTHORIZATION statement.

Permissions

Permission for altering a message type defaults to the owner of the message type, members of
the db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.

When the ALTER MESSAGE TYPE statement specifies a schema collection, the user executing the
statement must have REFERENCES permission on the schema collection specified.
Examples

The following example changes the message type //Adventure-
Works.com/Expenses/SubmitExpense to require that the message body contain a well-formed
XML document.

ALTER MESSAGE TYPE
[//Adventure-Works.com/Expenses/SubmitExpense]

VALIDATION = WELL FORMED XML ;

See Also

EVENTDATA (Transact-SQL)
CREATE MESSAGE TYPE
DROP MESSAGE TYPE
EVENTDATA (Transact-SQL)

181

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense

ALTER PARTITION FUNCTION

Alters a partition function by splitting or merging its boundary values. By executing ALTER
PARTITION FUNCTION, one partition of any table or index that uses the partition function can
be split into two partitions, or two partitions can be merged into one less partition.

@ caution
More than one table or index can use the same partition function. ALTER PARTITION
FUNCTION affects all of them in a single transaction.

=5 Transact-SQL Syntax Conventions

Syntax

ALTER PARTITION FUNCTION partition_function_name()

{
SPLIT RANGE (boundary_value)

| MERGE RANGE (boundary_ value)
Yl
Arguments

partition_function_name

Is the name of the partition function to be modified.

SPLIT RANGE (boundary_value)

Adds one partition to the partition function. boundary_value determines the range of the
new partition, and must differ from the existing boundary ranges of the partition function.
Based on boundary_value, the Database Engine splits one of the existing ranges into two. Of
these two, the one where the new boundary_value resides is considered the new partition.

A filegroup must exist online and be marked by the partition scheme that uses the partition
function as NEXT USED to hold the new partition. Filegroups are allocated to partitions in a
CREATE PARTITION SCHEME statement. If a CREATE PARTITION SCHEME statement allocates
more filegroups than necessary (fewer partitions are created in the CREATE PARTITION
FUNCTION statement than filegroups to hold them), then there are unassigned filegroups,
and one of them is marked NEXT USED by the partition scheme. This filegroup will hold the
new partition. If there are no filegroups marked NEXT USED by the partition scheme, you
must use ALTER PARTITION SCHEME to either add a filegroup, or designate an existing one,
to hold the new partition. A filegroup that already holds partitions can be designated to hold
additional partitions. Because a partition function can participate in more than one partition
scheme, all the partition schemes that use the partition function to which you are adding
partitions must have a NEXT USED filegroup. Otherwise, ALTER PARTITION FUNCTION fails
with an error that displays the partition scheme or schemes that lack a NEXT USED filegroup.

If you create all the partitions in the same filegroup, that filegroup is initially assigned to be

182

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

the NEXT USED filegroup automatically. However, after a split operation is performed, there is
no longer a designated NEXT USED filegroup. You must explicitly assign the filegroup to be
the NEXT USED filegroup by using ALTER PARITION SCHEME or a subsequent split operation
will fail.

MERGE [RANGE (boundary_value)]

Drops a partition and merges any values that exist in the partition into one of the remaining
partitions. RANGE (boundary_value) must be an existing boundary value, into which the
values from the dropped partition are merged. The filegroup that originally held
boundary_value is removed from the partition scheme unless it is used by a remaining
partition, or is marked with the NEXT USED property. The merged partition resides in the
filegroup that originally did not hold boundary_value. boundary_value is a constant
expression that can reference variables (including user-defined type variables) or functions
(including user-defined functions). It cannot reference a Transact-SQL expression.
boundary_value must either match or be implicitly convertible to the data type of its
corresponding partitioning column, and cannot be truncated during implicit conversion in a
way that the size and scale of the value does not match that of its corresponding
input_parameter_type.

Best Practices

Always keep empty partitions at both ends of the partition range to guarantee that the partition
split (before loading new data) and partition merge (after unloading old data) do not incur any
data movement. Avoid splitting or merging populated partitions. This can be extremely
inefficient, as this may cause as much as four times more log generation, and may also cause
severe locking.

Limitations and Restrictions

ALTER PARTITION FUNCTION repartitions any tables and indexes that use the function in a
single atomic operation. However, this operation occurs offline, and depending on the extent of
repartitioning, may be resource-intensive.

ALTER PARTITION FUNCTION can only be used for splitting one partition into two, or merging
two partitions into one. To change the way a table is otherwise partitioned (for example, from 10
partitions to 5 partitions), you can exercise any of the following options. Depending on the
configuration of your system, these options can vary in resource consumption:

e Create a new partitioned table with the desired partition function, and then insert the data
from the old table into the new table by using an INSERT INTO...SELECT FROM statement.

e Create a partitioned clustered index on a heap.

Dropping a partitioned clustered index results in a partitioned heap.

e Drop and rebuild an existing partitioned index by using the Transact-SQL CREATE INDEX
statement with the DROP EXISTING = ON clause.

e Perform a sequence of ALTER PARTITION FUNCTION statements.

183

All filegroups that are affected by ALTER PARITITION FUNCTION must be online.

ALTER PARTITION FUNCTION fails when there is a disabled clustered index on any tables that
use the partition function.

SQL Server does not provide replication support for modifying a partition function. Changes to a
partition function in the publication database must be manually applied in the subscription
database.

Permissions

Any one of the following permissions can be used to execute ALTER PARTITION FUNCTION:

e ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin
fixed server role and the db_owner and db_ddladmin fixed database roles.

e CONTROL or ALTER permission on the database in which the partition function was created.

e CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in
which the partition function was created.

Examples

A. Splitting a partition of a partitioned table or index into two partitions

The following example creates a partition function to partition a table or index into four
partitions. ALTER PARTITION FUNCTION splits one of the partitions into two to create a total of
five partitions.

IF EXISTS (SELECT * FROM sys.partition functions
WHERE name = 'myRangePF1l')
DROP PARTITION FUNCTION myRangePF1;
GO
CREATE PARTITION FUNCTION myRangePF1l (int)
AS RANGE LEFT FOR VALUES (1, 100, 1000);
GO
--Split the partition between boundary values 100 and 1000
--to create two partitions between boundary values 100 and 500
--and between boundary values 500 and 1000.
ALTER PARTITION FUNCTION myRangePF1l ()
SPLIT RANGE (500);

B. Merging two partitions of a partitioned table into one partition

The following example creates the same partition function as above, and then merges two of the
partitions into one partition, for a total of three partitions.

IF EXISTS (SELECT * FROM sys.partition functions

184

WHERE name = 'myRangePF1l')
DROP PARTITION FUNCTION myRangePF1l;
GO
CREATE PARTITION FUNCTION myRangePFl (int)
AS RANGE LEFT FOR VALUES (1, 100, 1000);
GO
--Merge the partitions between boundary values 1 and 100
-—and between boundary values 100 and 1000 to create one partition
--between boundary values 1 and 1000.
ALTER PARTITION FUNCTION myRangePFl ()
MERGE RANGE (100);

See Also
Partitioned Tables and Indexes

sys.index columns (Transact-SQL)
DROP PARTITION FUNCTION
CREATE PARTITION SCHEME
ALTER PARTITION SCHEME
DROP PARTITION SCHEME
CREATE INDEX

ALTER INDEX

CREATE TABLE

sys.partition functions

sys.partition parameters

sys.partition range values

sys.partitions
sys.tables

sys.indexes
sys.index columns

ALTER PARTITION SCHEME

Adds a filegroup to a partition scheme or alters the designation of the NEXT USED filegroup for
the partition scheme.

=k Transact-SQL Syntax Conventions

185

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/96515727-728b-4bea-804a-36ce915b8b75(SQL.110)�
http://msdn.microsoft.com/en-us/library/2012ed9d-3ea3-4c29-9b78-dfa54a392dce(SQL.110)�
http://msdn.microsoft.com/en-us/library/9aee483e-61f3-4613-bec6-f084161f45ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

Syntax

ALTER PARTITION SCHEME partition_scheme name
NEXT USED [filegroup_name] [;]

Arguments

partition_scheme_name

Is the name of the partition scheme to be altered.

filegroup_name

Specifies the filegroup to be marked by the partition scheme as NEXT USED. This means the
filegroup will accept a new partition that is created by using an ALTER PARTITION
FUNCTION statement.

In a partition scheme, only one filegroup can be designated NEXT USED. A filegroup that is

not empty can be specified. If filegroup_name is specified and there currently is no filegroup
marked NEXT USED, filegroup_name is marked NEXT USED. If filegroup_name is specified,
and a filegroup with the NEXT USED property already exists, the NEXT USED property
transfers from the existing filegroup to filegroup_name.

If filegroup_name is not specified and a filegroup with the NEXT USED property already
exists, that filegroup loses its NEXT USED state so that there are no NEXT USED filegroups in
partition_scheme_name.

If filegroup_name is not specified, and there are no filegroups marked NEXT USED, ALTER
PARTITION SCHEME returns a warning.

Remarks
Any filegroup affected by ALTER PARTITION SCHEME must be online.

Permissions
Tthe following permissions can be used to execute ALTER PARTITION SCHEME:

ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin
fixed server role and the db_owner and db_ddladmin fixed database roles.

CONTROL or ALTER permission on the database in which the partition scheme was created.

CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in
which the partition scheme was created.

Examples

The following example assumes the partition scheme MyRangePs1 and the filegroup test5fg
exist in the current database.

ALTER PARTITION SCHEME MyRangePS1

NEXT USED testb5fg;

186

Filegroup test5fg will receive any additional partition of a partitioned table or index as a result
of an ALTER PARTITION FUNCTION statement.
See Also

sys.index columns (Transact-SQL)

DROP PARTITION SCHEME

CREATE PARTITION FUNCTION

ALTER PARTITION FUNCTION

DROP PARTITION FUNCTION

CREATE TABLE

CREATE INDEX

EVENTDATA

sys.partition schemes

sys.data spaces

sys.destination data spaces

sys.partitions
sys.tables

sys.indexes
sys.index columns

ALTER PROCEDURE

Modifies a previously created procedure that was created by executing the CREATE PROCEDURE
statement in SQL Server 2012.

=5 Transact-SQL Syntax Conventions (Transact-SOL)

Syntax

--Transact-SQL Stored Procedure Syntax
ALTER { PROC | PROCEDURE } [schema_name.] procedure name [; number]
[{ @parameter [type schema name.]| data_type }
[VARYING] [= default][OUT | OUTPUT] [READONLY]
1[,.n]
[WITH <procedure_option>[,...n]]
[FOR REPLICATION]
AS {[BEGIN] sql_statement [[][..n][END]}
(]

187

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed557fd5-12b0-4cef-9e4f-440b02e99d1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/92df932b-ad5c-43f8-81f4-b158823ab189(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<procedure_option> ::=
[ENCRYPTION]
[RECOMPILE]
[EXECUTE AS Clause]

--CLR Stored Procedure Syntax
ALTER { PROC | PROCEDURE } [schema_name.] procedure name [; number]
[{ @parameter [type schema name.] data_type }
[= default] [OUT | OUTPUT] [READONLY]
1[,.n]
[WITH EXECUTE AS Clause]
AS { EXTERNAL NAME assembly name.class_name.method name }

L]

Arguments

schema_name

The name of the schema to which the procedure belongs.

procedure_name

The name of the procedure to change. Procedure names must comply with the rules for
identifiers.

: number

An existing optional integer that is used to group procedures of the same name so that they
can be dropped together by using one DROP PROCEDURE statement.

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this feature in
new development work, and plan to modify applications that currently use this feature.

@ parameter

A parameter in the procedure. Up to 2,100 parameters can be specified.

[type_schema_name.] data_type
Is the data type of the parameter and the schema it belongs to.
For information about data type restrictions, see CREATE PROCEDURE (Transact-SQL).

VARYING

Specifies the result set supported as an output parameter. This parameter is constructed
dynamically by the stored procedure and its contents can vary. Applies only to cursor

188

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

parameters. This option is not valid for CLR procedures.

default

Is a default value for the parameter.

OUT | OUTPUT

Indicates that the parameter is a return parameter.

READONLY

Indicates that the parameter cannot be updated or modified within the body of the
procedure. If the parameter type is a table-value type, READONLY must be specified.

RECOMPILE

Indicates that the Database Engine does not cache a plan for this procedure and the
procedure is recompiled at run time.

ENCRYPTION

Indicates that the Database Engine will convert the original text of the ALTER PROCEDURE
statement to an obfuscated format. The output of the obfuscation is not directly visible in any
of the catalog views in SQL Server. Users that have no access to system tables or database
files cannot retrieve the obfuscated text. However, the text will be available to privileged
users that can either access system tables over the DAC port or directly access database
files. Also, users that can attach a debugger to the server process can retrieve the original
procedure from memory at runtime. For more information about accessing system metadata,
see Metadata Visibility Configuration.

Procedures created with this option cannot be published as part of SQL Server replication.

This option cannot be specified for common language runtime (CLR) stored procedures.

During an upgrade, the Database Engine uses the obfuscated comments stored in sys.sql_modules to
re-create procedures.

EXECUTE AS

Specifies the security context under which to execute the stored procedure after it is
accessed.

For more information, see EXECUTE AS Clause (Transact-SQL).

FOR REPLICATION

Specifies that stored procedures that are created for replication cannot be executed on the
Subscriber. A stored procedure created with the FOR REPLICATION option is used as a stored
procedure filter and only executed during replication. Parameters cannot be declared if FOR
REPLICATION is specified. This option is not valid for CLR procedures. The RECOMPILE option
is ignored for procedures created with FOR REPLICATION.

189

http://msdn.microsoft.com/en-us/library/993e0820-17f2-4c43-880c-d38290bf7abc(SQL.110)�
http://msdn.microsoft.com/en-us/library/50d2e015-05ae-4014-a1cd-4de7866ad651(SQL.110)�
http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

This option is not available in a contained database.

{ [BEGIN] sql_statement [;][..n] [END] }

One or more Transact-SQL statements comprising the body of the procedure. You can use
the optional BEGIN and END keywords to enclose the statements. For more information, see
the Best Practices, General Remarks, and Limitations and Restrictions sections in CREATE

PROCEDURE (Transact-SOL).

EXTERNAL NAME assembly_name.class_name.method_name

Specifies the method of a .NET Framework assembly for a CLR stored procedure to reference.
class_name must be a valid SQL Server identifier and must exist as a class in the assembly. If
the class has a namespace-qualified name uses a period (.) to separate namespace parts, the
class name must be delimited by using brackets ([]) or quotation marks (" ™). The specified
method must be a static method of the class.

By default, SQL Server cannot execute CLR code. You can create, modify, and drop database

objects that reference common language runtime modules; however, you cannot execute
these references in SQL Server until you enable the clr enabled option. To enable the

option, use sp_configure.

CLR procedures are not supported in a contained database.

General Remarks

Transact-SQL stored procedures cannot be modified to be CLR stored procedures and vice
versa.

ALTER PROCEDURE does not change permissions and does not affect any dependent stored
procedures or triggers. However, the current session settings for QUOTED_IDENTIFIER and
ANSI_NULLS are included in the stored procedure when it is modified. If the settings are
different from those in effect when stored procedure was originally created, the behavior of the
stored procedure may change.

If a previous procedure definition was created using WITH ENCRYPTION or WITH RECOMPILE,
these options are enabled only if they are included in ALTER PROCEDURE.

For more information about stored procedures, see CREATE PROCEDURE (Transact-SQL).

Security

Permissions

Requires ALTER permission on the procedure or requires membership in the db_ddladmin fixed
database role.

Examples

The following example creates the uspvendorallInfo stored procedure. This procedure returns
the names of all the vendors that supply Adventure Works Cycles, the products they supply,

190

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

their credit ratings, and their availability. After this procedure is created, it is then modified to
return a different result set.

USE AdventureWorks2012;

GO

IF OBJECT ID ('Purchasing.uspVendorAllInfo', 'P') IS NOT NULL
DROP PROCEDURE Purchasing.uspVendorAllInfo;

GO

CREATE PROCEDURE Purchasing.uspVendorAllInfo
WITH EXECUTE AS CALLER
AS
SET NOCOUNT ON;
SELECT v.Name AS Vendor, p.Name AS 'Product name',
v.CreditRating AS 'Rating',
v.ActiveFlag AS Availability
FROM Purchasing.Vendor v
INNER JOIN Purchasing.ProductVendor pv
ON v.BusinessEntityID = pv.BusinessEntityID
INNER JOIN Production.Product p
ON pv.ProductID = p.ProductID
ORDER BY v.Name ASC;
GO

The following example alters the uspvendorallinfo stored procedure. It removes the EXECUTE
AS CALLER clause and modifies the body of the procedure to return only those vendors that
supply the specified product. The LEFT and caSE functions customize the appearance of the
result set.

USE AdventureWorks2012;
GO
ALTER PROCEDURE Purchasing.uspVendorAllInfo
@Product varchar (25)
AS
SET NOCOUNT ONj;
SELECT LEFT (v.Name, 25) AS Vendor, LEFT (p.Name, 25) AS 'Product name',
'Rating' = CASE v.CreditRating
WHEN 1 THEN 'Superior'
WHEN 2 THEN 'Excellent'

191

WHEN 3 THEN 'Above average'
WHEN 4 THEN 'Average'
WHEN 5 THEN 'Below average'
ELSE 'No rating'
END

, Availability = CASE v.ActiveFlag
WHEN 1 THEN 'Yes'
ELSE 'No'
END

FROM Purchasing.Vendor AS v

INNER JOIN Purchasing.ProductVendor AS pv

ON v.BusinessEntityID = pv.BusinessEntityID

INNER JOIN Production.Product AS p
ON pv.ProductID = p.ProductID
WHERE p.Name LIKE @Product
ORDER BY wv.Name ASC;
GO

Here is the result set.

Vendor Product name Rating
Proseware, Inc. LL Crankarm Average
Vision Cycles, Inc. LL Crankarm Superior

(2 row(s) affected)

See Also

CREATE PROCEDURE (Transact-SQL)
DROP PROCEDURE

EXECUTE (Transact-SQL)

EXECUTE AS (Transact-SQL)
EVENTDATA (Transact-SQL)

Stored Procedures (Database Engine)

sys.procedures (Transact-SQL)

Availability

No

Yes

192

http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/613b8271-7f7d-4378-b7a2-5a7698551dbd(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc6daf62-9663-4c3e-950a-ab42e2830427(SQL.110)�
http://msdn.microsoft.com/en-us/library/d17af274-b2dd-464e-9523-ee1f43e1455b(SQL.110)�

ALTER QUEUE

Changes the properties of a queue.
=5 Transact-SQL Syntax Conventions

Syntax

ALTER QUEUE <object> WITH
[STATUS ={ON | OFF}[, 1]
[RETENTION = {ON |OFF } [,]1]
[ACTIVATION (¢
{[STATUS={ON |OFF} [, 1]
[PROCEDURE_NAME = <procedure> [, 1]
[MAX_QUEUE_READERS =max_readers [,]]
[EXECUTE AS { SELF | 'user_name' | OWNER}]
| DROP}
) [
[POISON_MESSAGE_HANDLING (
STATUS = {ON | OFF })
]
[7]

<object> ::=
{
[database_name. [schema_name] . | schema name.]

queue_name

<procedure> ::=

{
[database_name. [schema_name] . | schema name.]

stored_procedure_ name

Arguments

193

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

database_name (object)
Is the name of the database that contains the queue to be changed. When no
database_name is provided, this defaults to the current database.

schema_name (object)
Is the name of the schema to which the new queue belongs. When no schema_name is
provided, this defaults to the default schema for the current user.

queue_name

Is the name of the queue to be changed.

STATUS (Queue)
Specifies whether the queue is available (ON) or unavailable (OFF). When the queue is
unavailable, no messages can be added to the queue or removed from the queue.
RETENTION

Specifies the retention setting for the queue. If RETENTION = ON, all messages sent or
received on conversations using this queue are retained in the queue until the conversations
have ended. This allows you to retain messages for auditing purposes, or to perform
compensating transactions if an error occurs

Setting RETENTION = ON can reduce performance. This setting should only be used if required to
meet the service level agreement for the application.
ACTIVATION
Specifies information about the stored procedure that is activated to process messages that
arrive in this queue.
STATUS (Activation)
Specifies whether or not the queue activates the stored procedure. When STATUS = ON, the
queue starts the stored procedure specified with PROCEDURE_NAME when the number of
procedures currently running is less than MAX_QUEUE_READERS and when messages arrive
on the queue faster than the stored procedures receive messages. When STATUS = OFF, the
gueue does not activate the stored procedure.
PROCEDURE_NAME = <procedure>
Specifies the name of the stored procedure to activate when the queue contains messages to
be processed. This value must be a SQL Server identifier.
database_name (procedure)

Is the name of the database that contains the stored procedure.

schema_name (procedure)

Is the name of the schema that owns the stored procedure.

194

stored_procedure_name

Is the name of the stored procedure.

MAX_QUEUE_READERS = max_reader

Specifies the maximum number of instances of the activation stored procedure that the
queue starts simultaneously. The value of max_readers must be a number between 0 and
32767.

EXECUTE AS

Specifies the SQL Server database user account under which the activation stored procedure
runs. SQL Server must be able to check the permissions for this user at the time that the
gueue activates the stored procedure. For Windows domain user, the SQL Server must be
connected to the domain and able to validate the permissions of the specified user when the
procedure is activated or activation fails. For a SQL Server user, the server can always check
permissions.

SELF
Specifies that the stored procedure executes as the current user. (The database principal
executing this ALTER QUEUE statement.)

'user_name'
Is the name of the user that the stored procedure executes as. user_name must be a valid
SQL Server user specified as a SQL Server identifier. The current user must have
IMPERSONATE permission for the user_name specified.

OWNER

Specifies that the stored procedure executes as the owner of the queue.

DROP

Deletes all of the activation information associated with the queue.

POISON_MESSAGE_HANDLING
Specifies whether poison message handling is enabled. The default is ON.
A queue that has poison message handling set to OFF will not be disabled after five

consecutive transaction rollbacks. This allows for a custom poison message handing system
to be defined by the application.

Remarks

When a queue with a specified activation stored procedure contains messages, changing the
activation status from OFF to ON immediately activates the activation stored procedure. Altering
the activation status from ON to OFF stops the broker from activating instances of the stored
procedure, but does not stop instances of the stored procedure that are currently running.

Altering a queue to add an activation stored procedure does not change the activation status of
the queue. Changing the activation stored procedure for the queue does not affect instances of
the activation stored procedure that are currently running.

195

Service Broker checks the maximum number of queue readers for a queue as part of the
activation process. Therefore, altering a queue to increase the maximum number of queue
readers allows Service Broker to immediately start more instances of the activation stored
procedure. Altering a queue to decrease the maximum number of queue readers does not affect
instances of the activation stored procedure currently running. However, Service Broker does not
start a new instance of the stored procedure until the number of instances for the activation
stored procedure falls below the configured maximum number.

When a queue is unavailable, Service Broker holds messages for services that use the queue in
the transmission queue for the database. The sys.transmission queue catalog view provides a
view of the transmission queue.

If a RECEIVE statement or a GET CONVERSATION GROUP statement specifies an unavailable
gueue, that statement fails with a Transact-SQL error.

Permissions

Permission for altering a queue defaults to the owner of the queue, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.
Examples

A. Making a queue unavailable
The following example makes the ExpenseQueue queue unavailable to receive messages.

ALTER QUEUE ExpenseQueue WITH STATUS = OFF ;

B. Changing the activation stored procedure

The following example changes the stored procedure that the queue starts. The stored
procedure executes as the user who ran the ALTER QUEUE statement.

ALTER QUEUE ExpenseQueue
WITH ACTIVATION (
PROCEDURE NAME = new stored proc,

EXECUTE AS SELF) ;

C. Changing the number of queue readers

The following example sets to 7 the maximum number of stored procedure instances that
Service Broker starts for this queue.

ALTER QUEUE ExpenseQueue WITH ACTIVATION (MAX QUEUE READERS = 7) ;

D. Changing the activation stored procedure and the EXECUTE AS account

The following example changes the stored procedure that Service Broker starts. The stored
procedure executes as the user SecurityAccount.

ALTER QUEUE ExpenseQueue
WITH ACTIVATION (

196

http://msdn.microsoft.com/en-us/library/f3515d1a-be8f-4a27-8058-8865f0919838(SQL.110)�

PROCEDURE NAME = AdventureWorks2012.dbo.new stored proc ,

EXECUTE AS 'SecurityAccount') ;

E. Setting the queue to retain messages

The following example sets the queue to retain messages. The queue retains all messages sent
to or from services that use this queue until the conversation that contains the message ends.

ALTER QUEUE ExpenseQueue WITH RETENTION = ON ;

F. Removing activation from a queue
The following example removes all activation information from the queue.

ALTER QUEUE ExpenseQueue WITH ACTIVATION (DROP) ;

See Also
CREATE QUEUE
DROP QUEUE
EVENTDATA

ALTER REMOTE SERVICE BINDING

Changes the user associated with a remote service binding, or changes the anonymous
authentication setting for the binding.

=5 Transact-SQL Syntax Conventions

Syntax

ALTER REMOTE SERVICE BINDING binding _name
WITH [USER = <user_name>] [, ANONYMOUS = { ON | OFF }]

(]

Arguments

binding_name
The name of the remote service binding to change. Server, database, and schema names
cannot be specified.

WITH USER = <user_name>
Specifies the database user that holds the certificate associated with the remote service for
this binding. The public key from this certificate is used for encryption and authentication of
messages exchanged with the remote service.

ANONYMOUS

Specifies whether anonymous authentication is used when communicating with the remote
service. If ANONYMOUS = ON, anonymous authentication is used and the credentials of the

197

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

local user are not transferred to the remote service. If ANONYMOUS = OFF, user credentials
are transferred. If this clause is not specified, the default is OFF.

Remarks

The public key in the certificate associated with user_name is used to authenticate messages
sent to the remote service and to encrypt a session key that is then used to encrypt the
conversation. The certificate for user_name must correspond to the certificate for a login in the
database that hosts the remote service.

Permissions

Permission for altering a remote service binding defaults to the owner of the remote service
binding, members of the db_owner fixed database role, and members of the sysadmin fixed
server role.

The user that executes the ALTER REMOTE SERVICE BINDING statement must have impersonate
permission for the user specified in the statement.

To alter the AUTHORIZATION for a remote service binding, use the ALTER AUTHORIZATION
statement.
Examples

The following example changes the remote service binding APBinding to encrypt messages by
using the certificates from the account securityaccount.

ALTER REMOTE SERVICE BINDING APBinding

WITH USER = SecurityAccount ;

See Also

EVENTDATA (Transact-SQL)
DROP REMOTE SERVICE BINDING
EVENTDATA

ALTER RESOURCE GOVERNOR

This command is used to perform the following actions:

e Apply the configuration changes specified when the CREATE|ALTER|DROP WORKLOAD
GROUP or CREATE|ALTER|DROP RESOURCE POOL statements are issued.

e Enable or disable Resource Governor.

e Configure classification for incoming requests.

e Reset workload group and resource pool statistics.
=5 Transact-SQL Syntax Conventions

Syntax

198

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

ALTER RESOURCE GOVERNOR
{ DISABLE | RECONFIGURE }

WITH (CLASSIFIER_FUNCTION = { schema_name.function_name | NULL})

RESET STATISTICS
(/]

Arguments

Term

Definition

DISABLE | RECONFIGURE

DISABLE disables Resource Governor.
Disabling Resource Governor has the
following results:

e The classifier function is not executed.

e All new connections are automatically
classified into the default group.

e System-initiated requests are classified
into the internal workload group.

e All existing workload group and
resource pool settings are reset to their
default values. In this case, no events are
fired when limits are reached.

e Normal system monitoring is not
affected.

e Configuration changes can be made, but
the changes do not take effect until
Resource Governor is enabled.

e Upon restarting SQL Server, the
Resource Governor will not load its
configuration, but instead will have only
the default and internal groups and
pools.

When the Resource Governor is not
enabled, RECONFIGURE enables the
Resource Governor. Enabling Resource
Governor has the following results:

e The classifier function is executed for
new connections so that their workload

199

can be assigned to workload groups.

e The resource limits that are specified in
the Resource Governor configuration are
honored and enforced.

e Requests that existed before enabling
Resource Governor are affected by any
configuration changes that were made
when Resource Governor was disabled.

When Resource Governor is running,
RECONFIGURE applies any configuration
changes requested when the
CREATE|ALTER|DROP WORKLOAD GROUP
or CREATE|ALTER|DROP RESOURCE POOL
statements are executed.

o Important
ALTER RESOURCE GOVERNOR
RECONFIGURE must be issued in
order for any configuration changes
to take effect.

CLASSIFIER_FUNCTION = { Registers the classification function specified
schema_name.function_name | NULL } by schema_name.function_name. This
function classifies every new session and
assigns the session requests and queries to
a workload group. When NULL is used, new
sessions are automatically assigned to the
default workload group.

RESET STATISTICS Resets statistics on all workload groups and
resource pools. For more information, see
sys.dm resource governor workload groups

(Transact-SQL) and

sys.dm resource governor resource pools

(Transact-SQL).

Remarks

ALTER RESOURCE GOVERNOR DISABLE, ALTER RESOURCE GOVERNOR RECONFIGURE, and
ALTER RESOURCE GOVERNOR RESET STATISTICS cannot be used inside a user transaction.

The RECONFIGURE parameter is part of the Resource Governor syntax and should not be
confused with RECONFIGURE, which is a separate DDL statement.

200

http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e6e4eeb-b70b-4f45-a253-28ac4e595d75(SQL.110)�

We recommend being familiar with Resource Governor states before you execute DDL
statements. For more information, see Resource Governor.

Permissions
Requires CONTROL SERVER permission.

Examples

A. Starting the Resource Governor

When SQL Server is first installed Resource Governor is disabled. The following example starts
Resource Governor. After the statement executes, Resource Governor is running and can use the
predefined workload groups and resource pools.

ALTER RESOURCE GOVERNOR RECONFIGURE;

B. Assigning new sessions to the default group

The following example assigns all new sessions to the default workload group by removing any
existing classifier function from the Resource Governor configuration. When no function is
designated as a classifier function, all new sessions are assigned to the default workload group.
This change applies to new sessions only. Existing sessions are not affected.

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER FUNCTION = NULL);
GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

C. Creating and registering a classifier function

The following example creates a classifier function named dbo.rgclassifier vi1. The function
classifies every new session based on either the user name or application name and assigns the
session requests and queries to a specific workload group. Sessions that do not map to the
specified user or application names are assigned to the default workload group. The classifier
function is then registered and the configuration change is applied.

-- Store the classifier function in the master database.
USE master;

GO

SET ANSI NULLS ON;

GO

SET QUOTED IDENTIFIER ON;

GO

CREATE FUNCTION dbo.rgclassifier v1() RETURNS sysname
WITH SCHEMABINDING

AS

BEGIN

201

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

-—- Declare the variable to hold the value returned in sysname.
DECLARE (@grp name AS sysname
-— If the user login is 'sa', map the connection to the groupAdmin
-- workload group.
IF (SUSER NAME () = 'sa')
SET @grp name = 'groupAdmin'
-—- Use application information to map the connection to the groupAdhoc
-- workload group.
ELSE IF (APP NAME () LIKE 'S$MANAGEMENT STUDIO%')
OR (APP_NAME () LIKE '%QUERY ANALYZER%')
SET @grp_name = 'groupAdhoc'
-- If the application is for reporting, map the connection to
-- the groupReports workload group.
ELSE IF (APP NAME () LIKE 'SREPORT SERVER%')
SET @grp_name = 'groupReports'
-—- If the connection does not map to any of the previous groups,
-- put the connection into the default workload group.
ELSE
SET @grp_name = 'default'
RETURN @grp_name
END
GO
-- Register the classifier user-defined function and update the
-- the in-memory configuration.
ALTER RESOURCE GOVERNOR WITH (CLASSIFIER FUNCTION=dbo.rgclassifier vl);
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

D. Resetting Statistics
The following example resets all workload group and pool statistics.

ALTER RESOURCE GOVERNOR RESET STATISTICS;

See Also
CREATE RESOURCE POOL (Transact-SQL)

202

ALTER RESOURCE POOL (Transact-SQL)

DROP RESOURCE POOL (Transact-SQL)

CREATE WORKLOAD GROUP (Transact-SQL)

ALTER WORKLOAD GROUP (Transact-SQL)

DROP WORKLOAD GROUP (Transact-SQL)

Managing SQL Server Workloads with Resource Governor

sys.dm resource governor workload groups (Transact-SQL)

sys.dm resource governor resource pools (Transact-SQL)

ALTER RESOURCE POOL

Changes an existing Resource Governor resource pool configuration.
s5 Transact-SQL Syntax Conventions.The introduction is required.

Syntax

ALTER RESOURCE POOL { pool_name | "default” }
[WITH

([MIN_CPU_PERCENT = value]

[[, 1 MAX_CPU_PERCENT = value]

[[, 1CAP_CPU_PERCENT = value]

[[,]AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(NUMA_node_range_spec)}]

[[,] MIN_.MEMORY_PERCENT = value]
[[,] MAX_MEMORY_PERCENT = value])
]
L]

Scheduler_range_spec:=

{SCHED_ID | SCHED_ID TO SCHED_ID}|....n]
NUMA_node_range_spec::=

{NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID}|,...n]

Arguments

{ pool_name | "default” }

Is the name of an existing user-defined resource pool or the default resource pool that is
created when SQL Server 2012 is installed.

"default” must be enclosed by quotation marks ("") or brackets ([]) when used with ALTER

203

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

RESOURCE POOL to avoid conflict with DEFAULT, which is a system reserved word. For more
information, see Database Identifiers.

Predefined workload groups and resource pools all use lowercase names, such as "default”. This
should be taken into account for servers that use case-sensitive collation. Servers with case-insensitive
collation, such as SQL_Latin1_General_CP1_CI_AS, will treat "default" and "Default" as the same.

MIN_CPU_PERCENT = value

Specifies the guaranteed average CPU bandwidth for all requests in the resource pool when
there is CPU contention. value is an integer with a default setting of 0. The allowed range for
value is from 0 through 100.

MAX_CPU_PERCENT = value

Specifies the maximum average CPU bandwidth that all requests in the resource pool will
receive when there is CPU contention. value is an integer with a default setting of 100. The
allowed range for value is from 1 through 100.

CAP_CPU_PERCENT = value

Specifies a hard cap on the CPU bandwidth that all requests in the resource pool will receive.
Limits the maximum CPU bandwidth level to be the same as the specified value. value is an
integer with a default setting of 100. The allowed range for value is from 1 through 100.

AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(NUMA _node_range_spec)}

Attach the resource pool to specific schedulers. The default value is AUTO.

MIN_MEMORY_PERCENT = value

Specifies the minimum amount of memory reserved for this resource pool that can not be
shared with other resource pools. value is an integer with a default setting of 0. The allowed
range for value is from 0 through 100.

MAX_MEMORY_PERCENT = value

Specifies the total server memory that can be used by requests in this resource pool. value is
an integer with a default setting of 100. The allowed range for value is from 1 through 100.

Remarks

MAX_CPU_PERCENT and MAX_MEMORY_PERCENT must be greater than or equal to
MIN_CPU_PERCENT and MIN_MEMORY_PERCENT, respectively.

CAP_CPU_PERCENT differs from MAX_CPU_PERCENT in that workloads associated with the pool
can use CPU capacity above the value of MAX_CPU_PERCENT if it is available, but not above the
value of CAP_CPU_PERCENT.

The total CPU percentage for each affinitized component (scheduler(s) or NUMA node(s)) should
not exceed 100%.

204

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.

Permissions
Requires CONTROL SERVER permission.

Examples

The following example keeps all the default resource pool settings on the default pool except
for MaAx_CPU_PERCENT, which is changed to 25.

ALTER RESOURCE POOL "default"
WITH
(MAX CPU PERCENT = 25)
GO
ALTER RESOURCE GOVERNOR RECONFIGURE
GO

In the following example, the cAp_cPU_ PERCENT sets the hard cap to 80% and AFFINITY
SCHEDULER is set to an individual value of 8 and a range of 12 to 16.

ALTER RESOURCE POOL P0o0l25

WITH (
MIN CPU PERCENT = 5,
MAX CPU PERCENT = 10,
CAP_CPU_PERCENT = 80,
AFFINITY SCHEDULER = (8, 12 TO 16),
MIN MEMORY PERCENT = 5,

MAX MEMORY PERCENT = 15

GO
ALTER RESOURCE GOVERNOR RECONFIGURE

GO

See Also

Resource Governor

CREATE RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
CREATE WORKLOAD GROUP (Transact-SQL)

205

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

ALTER ROLE

Adds members to a database role or changes the name of a user-defined database role.
.= Transact-SQL Syntax Conventions

Syntax

ALTER ROLE role_name
{
[ADD MEMBER database_principal]
| [DROP MEMBER database_principal]
| WITH NAME = new_name
}

Arguments
role_name
Is the name of the role to be changed.

ADD MEMBER database_principal
Adds the specified database principal to the database role. database_principal can be a user
or a user-defined database role. database_principal cannot be a fixed database role, or a
server principal.

DROP MEMBER database_principal

Removes the specified database principal from the database role. database_principal can be a
user or a user-defined database role. database_principal cannot be a fixed database role, a
server principal.

WITH NAME = new_name

Specifies the new name of the user-defined role. This name must not already exist in the
database. You cannot change the name of fixed database roles.

Remarks

Changing the name of a database role does not change ID number, owner, or permissions of the
role.

Database roles are visible in the sys.database_role_members and sys.database_principals catalog
views.

206

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

@ caution
Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code

that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions

Requires ALTER ANY ROLE permission on the database, or ALTER permission on the role, or

membership in the db_securityadmin.

Examples

A. Changing the Name of a Database Role

The following example changes the name of role buyers to purchasing.
USE AdventureWorks2012;

ALTER ROLE buyers WITH NAME = purchasing;

GO

B. Adding and Removing Role Members

The following example creates a role named sales, adds and then removes a user named
Barry.

CREATE ROLE Sales;
ALTER ROLE Sales ADD MEMBER Barry;

ALTER ROLE Sales DROP MEMBER Barry;
See Also
CREATE ROLE (Transact-SQL)

Principals
DROP ROLE (Transact-SQL)

sp_addrolemember (Transact-SQL)

sys.database role members (Transact-SQL)

sys.database principals (Transact-SQL)

ALTER ROUTE

Modifies route information for an existing route.

207

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�

=5 Transact-SQL Syntax Conventions

Syntax

ALTER ROUTE route_name
WITH

[SERVICE_NAME = 'service_name' [,]]

[BROKER_INSTANCE = 'broker_instance'[,]]

[LIFETIME = route_lifetime [,]]

[ADDRESS = 'next hop_address'[,]]

[MIRROR_ADDRESS = 'next_hop mirror_address']
[:]

Arguments
route_name

Is the name of the route to change. Server, database, and schema names cannot be specified.

WITH

Introduces the clauses that define the route being altered.

SERVICE_NAME = 'service_name’

Specifies the name of the remote service that this route points to. The service_name must
exactly match the name the remote service uses. Service Broker uses a byte-by-byte
comparison to match the service_name. In other words, the comparison is case sensitive and
does not consider the current collation. A route with a service name of
'SQL/ServiceBroker/BrokerConfiguration’ is a route to a Broker Configuration Notice
service. A route to this service might not specify a broker instance.

If the SERVICE_NAME clause is omitted, the service name for the route is unchanged.

BROKER_INSTANCE = 'broker_instance’

Specifies the database that hosts the target service. The broker_instance parameter must be
the broker instance identifier for the remote database, which can be obtained by running the
following query in the selected database:

SELECT service broker guid
FROM sys.databases
WHERE database id = DB ID()

When the BROKER_INSTANCE clause is omitted, the broker instance for the route is
unchanged.

208

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

This option is not available in a contained database.

LIFETIME = route_lifetime
Specifies the time, in seconds, that SQL Server retains the route in the routing table. At the
end of the lifetime, the route expires, and SQL Server no longer considers the route when
choosing a route for a new conversation. If this clause is omitted, the lifetime of the route is
unchanged.

ADDRESS = 'next_hop_address’

Specifies the network address for this route. The next_hop_address specifies a TCP/IP address
in the following format:

TCP:// { dns_name | netbios_name | ip_address } : port_number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

FROM sys.tcp endpoints AS tcpe

INNER JOIN sys.service broker endpoints AS ssbe
ON ssbe.endpoint id = tcpe.endpoint id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

When a route specifies 'LOCAL' for the next_hop_address, the message is delivered to a
service within the current instance of SQL Server.

When a route specifies "TRANSPORT" for the next_hop_address, the network address is
determined based on the network address in the name of the service. A route that specifies
"TRANSPORT' can specify a service name or broker instance.

When the next_hop_address is the principal server for a database mirror, you must also
specify the MIRROR_ADDRESS for the mirror server. Otherwise, this route does not
automatically failover to the mirror server.

This option is not available in a contained database.

MIRROR_ADDRESS = 'next_hop_mirror_address’

Specifies the network address for the mirror server of a mirrored pair whose principal server
is at the next_hop_address. The next_hop_mirror_address specifies a TCP/IP address in the
following format:

TCP://{ dns_name | netbios_name | ip_address } : port_ number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

209

FROM sys.tcp endpoints AS tcpe

INNER JOIN sys.service broker endpoints AS ssbe
ON ssbe.endpoint id = tcpe.endpoint id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

When the MIRROR_ADDRESS is specified, the route must specify the SERVICE_NAME clause
and the BROKER_INSTANCE clause. A route that specifies 'LOCAL' or ‘TRANSPORT" for the
next_hop_address might not specify a mirror address

This option is not available in a contained database.

Remarks

The routing table that stores the routes is a meta-data table that can be read through the
sys.routes catalog view. The routing table can only be updated through the CREATE ROUTE,
ALTER ROUTE, and DROP ROUTE statements.

Clauses that are not specified in the ALTER ROUTE command remain unchanged. Therefore, you
cannot ALTER a route to specify that the route does not time out, that the route matches any
service name, or that the route matches any broker instance. To change these characteristics of a
route, you must drop the existing route and create a new route with the new information.
When a route specifies "TRANSPORT' for the next_hop_address, the network address is
determined based on the name of the service. SQL Server can successfully process service
names that begin with a network address in a format that is valid for a next_hop_address.
Services with names that contain valid network addresses will route to the network address in
the service name.

The routing table can contain any number of routes that specify the same service, network
address, and/or broker instance identifier. In this case, Service Broker chooses a route using a
procedure designed to find the most exact match between the information specified in the
conversation and the information in the routing table.

To alter the AUTHORIZATION for a service, use the ALTER AUTHORIZATION statement.

Permissions

Permission for altering a route defaults to the owner of the route, members of the db_ddladmin
or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples

A. Changing the service for a route

The following example modifies the ExpenseRoute route to point to the remote service
//Adventure-Works.com/Expenses.

ALTER ROUTE ExpenseRoute

WITH

210

www.Adventure-Works.com/Expenses

SERVICE NAME = '//Adventure-Works.com/Expenses'

B. Changing the target database for a route

The following example changes the target database for the ExpenseRoute route to the
database identified by the unique identifier D8D4D268-00A3-4C62-8F91-634B89BIE317.

ALTER ROUTE ExpenseRoute
WITH
BROKER INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89B1E317"'

C. Changing the address for a route

The following example changes the network address for the ExpenseRoute route to TCP port
1234 on the host with the IP address 10.2.19.72.

ALTER ROUTE ExpenseRoute
WITH
ADDRESS = 'TCP://10.2.19.72:1234"

D. Changing the database and address for a route

The following example changes the network address for the ExpenseRoute route to TCP port
1234 on the host with the DNS name www.Adventure-Works.com. It also changes the target
database to the database identified by the unique identifier D8D4D268-00A3-4C62-8F91-
634B89B1E317.

ALTER ROUTE ExpenseRoute
WITH
BROKER INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89B1E317",

ADDRESS = 'TCP://www.Adventure-Works.com:1234"

See Also
CREATE ROUTE
DROP ROUTE
EVENTDATA

ALTER SCHEMA

Transfers a securable between schemas.
=k Transact-SQL Syntax Conventions

Syntax

ALTER SCHEMA schema_name
TRANSFER [<entity_type> ::] securable_name [;]

211

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://www.Adventure-Works.com
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234

<entity type> ::=

{
Object | Type | XML Schema Collection

}

Arguments

schema_name

Is the name of a schema in the current database, into which the securable will be moved.
Cannot be SYS or INFORMATION_SCHEMA.

<entity_type>
Is the class of the entity for which the owner is being changed. Object is the default.

securable_name

Is the one-part or two-part name of a schema-contained securable to be moved into the
schema.

Remarks
Users and schemas are completely separate.

ALTER SCHEMA can only be used to move securables between schemas in the same database.
To change or drop a securable within a schema, use the ALTER or DROP statement specific to
that securable.

If a one-part name is used for securable_name, the name-resolution rules currently in effect will
be used to locate the securable.

All permissions associated with the securable will be dropped when the securable is moved to
the new schema. If the owner of the securable has been explicitly set, the owner will remain
unchanged. If the owner of the securable has been set to SCHEMA OWNER, the owner will
remain SCHEMA OWNER; however, after the move SCHEMA OWNER will resolve to the owner of
the new schema. The principal_id of the new owner will be NULL.

To change the schema of a table or view by using SQL Server Management Studio, in Object
Explorer, right-click the table or view and then click Design. Press F4 to open the Properties
window. In the Schema box, select a new schema.

@ caution

Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The

212

new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .
Permissions

To transfer a securable from another schema, the current user must have CONTROL permission
on the securable (not schema) and ALTER permission on the target schema.

If the securable has an EXECUTE AS OWNER specification on it and the owner is set to SCHEMA
OWNER, the user must also have IMPERSONATION permission on the owner of the target
schema.

All permissions associated with the securable that is being transferred are dropped when it is
moved.
Examples

A. Transferring ownership of a table

The following example modifies the schema HumanrResources by transferring the table address
from schema pPerson into the schema.

USE AdventureWorks2012;
GO
ALTER SCHEMA HumanResources TRANSFER Person.Address;

GO

B. Transferring ownership of a type

The following example creates a type in the Production schema, and then transfers the type to
the person schema.

USE AdventureWorks2012;
GO

CREATE TYPE Production.TestType FROM [varchar] (10) NOT NULL ;
GO

—-— Check the type owner.
SELECT sys.types.name, sys.types.schema id, sys.schemas.name
FROM sys.types JOIN sys.schemas
ON sys.types.schema id = sys.schemas.schema id
WHERE sys.types.name = 'TestType' ;
GO

213

-- Change the type to the Person schema.

ALTER SCHEMA Person TRANSFER type::Production.TestType ;

GO

—-— Check the type owner.

SELECT sys.types.name, sys.types.schema id, sys.schemas.name

FROM sys.types JOIN sys.schemas
ON sys.types.schema id = sys.schemas.schema id
WHERE sys.types.name = 'TestType' ;
GO

See Also

CREATE SCHEMA (Transact-SQL)
DROP SCHEMA (Transact-SQL)
eventdata (Transact-SQL)

ALTER SEARCH PROPERTY LIST

Adds a specified search property to, or drops it from the specified search property list.

@ Important

CREATE SEARCH PROPERTY LIST, ALTER SEARCH PROPERTY LIST, and DROP SEARCH
PROPERTY LIST are supported only under compatibility level 110. Under lower

compatibility levels, these statements are not supported.

Syntax

ALTER SEARCH PROPERTY LIST 1ist_name
{
ADD 'property name'
WITH
(
PROPERTY_SET_GUID = 'property_set_guid'
, PROPERTY_INT_ID = property_int_id
[, PROPERTY_DESCRIPTION = 'property description']
)
| DROP 'property name'
}

214

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

Arguments
list_name
Is the name of the property list being altered. list_name is an identifier.

To view the names of the existing property lists, use the
sys.registered search property lists catalog view, as follows:

SELECT name FROM sys.registered search property lists;

ADD

Adds a specified search property to the property list specified by list_name. The property is
registered for the search property list . Before newly added properties can be used for
property searching, the associated full-text index or indexes must be repopulated. For more

information, see ALTER FULLTEXT INDEX (Transact-SQL).

To add a given search property to a search property list, you must provide its property-set GUID
(property_set_guid) and property int ID (property_int_id). For more information, see "Obtaining
Property Set GUIDS and Identifiers," later in this topic.

property_name

Specifies the name to be used to identify the property in full-text queries. property_name
must uniquely identify the property within the property set. A property name can contain
internal spaces. The maximum length of property_name is 256 characters. This name can be a
user-friendly name, such as Author or Home Address, or it can be the Windows canonical
name of the property, such as System.Author or System.Contact.HomeAddress.

Developers will need to use the value you specify for property_name to identify the property
in the CONTAINS predicate. Therefore, when adding a property it is important to specify a
value that meaningfully represents the property defined by the specified property set GUID
(property_set_guid) and property identifier (property_int_id). For more information about
property names, see "Remarks," later in this topic.

To view the names of properties that currently exist in a search property list of the current
database, use the sys.registered search properties catalog view, as follows:

SELECT property name FROM sys.registered search properties;

PROPERTY_SET _GUID = 'property_set_guid’
Specifies the identifier of the property set to which the property belongs. This is a globally
unique identifier (GUID). For information about obtaining this value, see "Remarks," later in
this topic.
To view the property set GUID of any property that exists in a search property list of the
current database, use the sys.registered search properties catalog view, as follows:

215

http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/996c72fc-b1ab-4c96-bd12-946be9c18f84(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�

SELECT property set guid FROM

sys.registered search properties;
PROPERTY_INT_ID = property_int_id

Specifies the integer that identifies the property within its property set. For information about

obtaining this value, see "Remarks."

To view the integer identifier of any property that exists in a search property list of the
current database, use the sys.registered search properties catalog view, as follows:

SELECT property int id FROM sys.registered search properties;

A given combination of property_set_guid and property_int_id must be unique in a search property
list. If you try to add an existing combination, the ALTER SEARCH PROPERTY LIST operation fails and
issues an error. This means that you can define only one name for a given property.
PROPERTY_DESCRIPTION = 'property_description’
Specifies a user-defined description of the property. property_description is a string of up to
512 characters. This option is optional.
DROP
Drops the specified property from the property list specified by list_name. Dropping a
property unregisters it, so it is no longer searchable.

Remarks
Each full-text index can have only one search property list.

To enable querying on a given search property, you must add it to the search property list of the
full-text index and then repopulate the index.

When specifying a property you can arrange the PROPERTY_SET_GUID, PROPERTY_INT_ID, and
PROPERTY_DESCRIPTION clauses in any order, as a comma-separated list within parentheses, for
example:

ALTER SEARCH PROPERTY LIST CVitaProperties

ADD 'System.Author'

WITH (
PROPERTY DESCRIPTION = 'Author or authors of a given document.',
PROPERTY SET GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9"',
PROPERTY INT ID = 4
)

4 Note

This example uses the property name, system.author, which is similar to the concept of
canonical property names introduced in Windows Vista (Windows canonical name).

216

http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�

Obtaining Property Values

Full-text search maps a search property to a full-text index by using its property set GUID and
property integer ID. For information about how to obtain these for properties that have been
defined by Microsoft, see Find Property Set GUIDs and Property Integer IDs for Search
Properties. For information about properties defined by an independent software vendor (ISV),
see the documentation of that vendor.

Making Added Properties Searchable

Adding a search property to a search property list registers the property. A newly added
property can be immediately specified in CONTAINS queries. However, property-scoped full-text
queries on a newly added property will not return documents until the associated full-text index
is repopulated. For example, the following property-scoped query on a newly added property,
new_search_property, will not return any documents until the full-text index associated with the
target table (table_name) is repopulated:

SELECT column name FROM table name WHERE CONTAINS(PROPERTY (column name,

'new search property'), 'contains search condition');
GO
To start a full population, use the following ALTER FULLTEXT INDEX (Transact-SQL) statement:

USE database name;

GO

ALTER FULLTEXT INDEX ON table name START FULL POPULATION;
GO

Repopulation is not needed after a property is dropped from a property list, because
only the properties that remain in the search property list are available for full-text

querying.
Related References
To create a property list
o (CREATE SEARCH PROPERTY LIST (Transact-SQL)
To drop a property list
e DROP SEARCH PROPERTY LIST (Transact-SQL)
To add or remove a property list on a full-text index
e ALTER FULLTEXT INDEX (Transact-SQL)
To run a population on a full-text index
e ALTER FULLTEXT INDEX (Transact-SQL)

Permissions
Requires CONTROL permission on the property list.

217

http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/996c72fc-b1ab-4c96-bd12-946be9c18f84(SQL.110)�

Examples

A. Adding a property
The following example adds several properties—Tit1le, Author, and Tags—to a property list
named DocumentPropertyList.

For an example that creates DocumentPropertyList property list, see CREATE SEARCH
PROPERTY LIST (Transact-SQL).

ALTER SEARCH PROPERTY LIST DocumentPropertyList

ADD 'Title'
WITH (PROPERTY SET GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9",
PROPERTY INT ID = 2,

PROPERTY DESCRIPTION = 'System.Title - Title of the item.');

ALTER SEARCH PROPERTY LIST DocumentPropertyList
ADD 'Author'

WITH (PROPERTY SET GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9",
PROPERTY INT ID = 4,

PROPERTY DESCRIPTION = 'System.Author - Author or authors of the item.'
)

ALTER SEARCH PROPERTY LIST DocumentPropertyList

ADD 'Tags'

WITH (PROPERTY SET GUID = 'F29F85E(0-4FF9-1068-AB91-08002B27B3D9"',
PROPERTY INT ID = 5,

PROPERTY DESCRIPTION = 'System.Keywords - Set of keywords (also known

as tags) assigned to the item.');

You must associate a given search property list with a full-text index before using it for
property-scoped queries. To do so, use an ALTER FULLTEXT INDEX statement and specify
the SET SEARCH PROPERTY LIST clause.
B. Dropping a property
The following example drops the comments property from the DocumentPropertyList property
list.

ALTER SEARCH PROPERTY LIST DocumentPropertyList

218

DROP 'Comments' ;

See Also

CREATE SEARCH PROPERTY LIST (Transact-SQL)
DROP SEARCH PROPERTY LIST (Transact-SQL)
sys.registered search properties (Transact-SQL)

sys.reqistered search property lists (Transact-SOL)

sys.dm fts index keywords by property (Transact-SQL)

Using Search Property Lists to Search for Properties (Full-Text Search)

Obtaining a Property Set GUID and Property Integer Identifier for a Search Property List (SQL
Server

ALTER SEQUENCE

Modifies the arguments of an existing sequence object. If the sequence was created with the
CACHE option, altering the sequence will recreate the cache.

Sequences objects are created by using the CREATE SEQUENCE statement. Sequences are
integer values and can be of any data type that returns an integer. The data type cannot be
changed by using the ALTER SEQUENCE statement. To change the data type, drop and create
the sequence object.

A sequence is a user-defined schema bound object that generates a sequence of numeric values
according to a specification. New values are generated from a sequence by calling the NEXT
VALUE FOR function. Use sp_sequence_get_range to get multiple sequence numbers at once.
For information and scenarios that use both CREATE SEQUENCE, sp_sequence_get_range, and
the NEXT VALUE FOR function, see Creating and Using Sequence Numbers.

=k Transact-SQL Syntax Conventions

Syntax

ALTER SEQUENCE [schema_name. | sequence_name
[RESTART [WITH <constant>]]
[INCREMENT BY <constant> |
[{ MINVALUE <constant> } | { NO MINVALUE }]
[{ MAXVALUE <constant> } | { NO MAXVALUE }]
[CYCLE | { NO CYCLE }]
[{ CACHE [<constant>]} |{ NO CACHE}]
[:]

Arguments

219

http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa41e052-a79a-4194-9b1a-2885f7828500(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

sequence_name

Specifies the unique name by which the sequence is known in the database. Type is sysname.

RESTART [WITH <constant>]

The next value that will be returned by the sequence object. If provided, the RESTART WITH
value must be an integer that is less than or equal to the maximum and greater than or equal
to the minimum value of the sequence object. If the WITH value is omitted, the sequence
numbering restarts based on the original CREATE SEQUENCE options.

INCREMENT BY <constant>

The value that is used to increment (or decrement if negative) the sequence object’s base
value for each call to the NEXT VALUE FOR function. If the increment is a negative value the
sequence object is descending, otherwise, it is ascending. The increment can not be 0.

[MINVALUE <constant> | NO MINVALUE]

Specifies the bounds for sequence object. If NO MINVALUE is specified, the minimum
possible value of the sequence data type is used.

[MAXVALUE <constant> | NO MAXVALUE

Specifies the bounds for sequence object. If NO MAXVALUE is specified, the maximum
possible value of the sequence data type is used.

[CYCLE | NO CYCLE]

This property specifies whether the sequence object should restart from the minimum value
(or maximum for descending sequence objects) or throw an exception when its minimum or
maximum value is exceeded.

After cycling the next value is the minimum or maximum value, not the START VALUE of the sequence.

[CACHE [<constant>] | NO CACHE]

Increases performance for applications that use sequence objects by minimizing the number
of IOs that are required to persist generated values to the system tables.

For more information about the behavior of the cache, see CREATE SEQUENCE
(Transact-SQL).

Remarks

For information about how sequences are created and how the sequence cache is managed, see
CREATE SEQUENCE (Transact-SQL).

The MINVALUE for ascending sequences and the MAXVALUE for descending sequences cannot
be altered to a value that does not permit the START WITH value of the sequence. To change
the MINVALUE of an ascending sequence to a number larger than the START WITH value or to
change the MAXVALUE of a descending sequence to a number smaller than the START WITH
value, include the RESTART WITH argument to restart the sequence at a desired point that falls
within the minimum and maximum range.

220

Metadata
For information about sequences, query sys.sequences.

Security

Permissions

Requires ALTER permission on the sequence or ALTER permission on the schema. To grant
ALTER permission on the sequence, use ALTER ON OBJECT in the following format:

GRANT ALTER ON OBJECT::Test.TinySeq TO [AdventureWorks\Larry]

The ownership of a sequence object can be transferred by using the ALTER AUTHORIZATION
statement.

Audit

To audit ALTER SEQUENCE, monitor the SCHEMA_OBJECT_CHANGE_GROUP.

Examples

For examples of both creating sequences and using the NEXT VALUE FOR function to generate
sequence numbers, see Creating and Using Sequence Numbers.

A. Altering a sequence

The following example creates a schema named Test and a sequence named TestSeq using the
int data type, having a range from 0 to 255. The sequence starts with 125 and increments by 25
every time that a number is generated. Because the sequence is configure to cycle, when the
value exceeds the maximum value of 200, the sequence restarts at the minimum value of 100.

CREATE SCHEMA Test ;
GO

CREATE SEQUENCE Test.TestSeq
AS int
START WITH 125
INCREMENT BY 25
MINVALUE 100
MAXVALUE 200
CYCLE

CACHE 3

GO

221

http://msdn.microsoft.com/en-us/library/0e1b0e32-1cce-40f7-83c8-860ec660138a(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�

The following example alters the TestSeq sequence to have a range from 0 to 255. The sequence
restarts the numbering series with 100 and increments by 50 every time that a number is
generated.

ALTER SEQUENCE Test. TestSeq
RESTART WITH 100
INCREMENT BY 50
MINVALUE 50
MAXVALUE 200
NO CYCLE
NO CACHE

GO

Because the sequence will not cycle, the NEXT VALUE FOR function will result in an error when

the sequence exceeds 200.

B. Restarting a sequence

The following example creates a sequence named CountByl. The sequence uses the default
values.

CREATE SEQUENCE Test.CountByl ;
To generate a sequence value, the owner then executes the following statement:
SELECT NEXT VALUE FOR Test.CountByl

The value returned of -9,223,372,036,854,775,808 is the lowest possible value for the bigint data
type. The owner realizes he wanted the sequence to start with 1, but did not indicate the START
WITH clause when he created the sequence. To correct this error, the owner executes the
following statement.

ALTER SEQUENCE Test.CountByl RESTART WITH 1 ;

Then the owner executes the following statement again to generate a sequence number.
SELECT NEXT VALUE FOR Test.CountByl;

The number is now 1, as expected.

The CountBy1 sequence was created using the default value of NO CYCLE so it will stop
operating after generating number 9,223,372,036,854,775,807. Subsequent calls to the sequence
object will return error 11728. The following statement changes the sequence object to cycle
and sets a cache of 20.

ALTER SEQUENCE Test.CountByl
CYCLE

CACHE 20 ;

222

Now when the sequence object reaches 9,223,372,036,854,775,807 it will cycle, and the next
number after cycling will be the minimum of the data type, -9,223,372,036,854,775,808.

The owner realized that the bigint data type uses 8 bytes each time it is used. The int data type
that uses 4 bytes is sufficient. However the data type of a sequence object cannot be altered. To
change to an int data type, the owner must drop the sequence object and recreate the object
with the correct data type.

See Also

CREATE SEQUENCE (Transact-SQL)

DROP SEQUENCE (Transact-SQL)

NEXT VALUE FOR function (Transact-SQL)

Creating and Using Sequence Numbers

sp _sequence get range (Transact-SQL)

ALTER SERVER AUDIT

Alters a server audit object using the SQL Server Audit feature. For more information, see
Understanding SQL Server Audit.

=k Transact-SQL Syntax Conventions

Syntax

ALTER SERVER AUDIT audit_name

{
[TO {{FILE (<file_options> [, ..n])} | APPLICATION_LOG | SECURITY_LOG }]
[WITH (<audit_options> [, ..n])]

[WHERE <predicate_expression> |

}
| REMOVE WHERE

| MODIFY NAME = new_audit_name
(7]

<file_options>::=
{
FILEPATH = 'os_file path'
| MAXSIZE = {max_size { MB | GB | TB } | UNLIMITED }
| MAX_ROLLOVER_FILES = { integer | UNLIMITED }
| MAX_FILES = integer

223

http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ca6b0c6-8d9c-4eee-b02f-51ddffab4492(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

| RESERVE_DISK_SPACE = { ON | OFF }

<audit_options>::=

{
QUEUE_DELAY = integer
| ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION }
| STATE = = { ON | OFF }
}

<predicate_expression>::=

{
[NoT] <predicate_factor>
[{aND | oR } [NOT | { <predicate_factor> }]
[,.n]

<predicate_factor>::=
event_field_name {=|< >|! =|>|> =|<|< =} {number | ' string '}

Arguments
TO { FILE | APPLICATION_LOG | SECURITY }

Determines the location of the audit target. The options are a binary file, the Windows
application log, or the Windows security log.

FILEPATH = 'os_file_path’

The path of the audit trail. The file name is generated based on the audit name and audit
GUID.

MAXSIZE = max_size

Specifies the maximum size to which the audit file can grow. The max_size value must be an
integer followed by MB, GB, TB, or UNLIMITED. The minimum size that you can specify for
max_size is 2 MB and the maximum is 2,147,483,647 TB. When UNLIMITED is specified the
file grows until the disk is full. Specifying a value lower than 2 MB will raise the error
MSG_MAXSIZE_TOO_SMALL. The default value is UNLIMITED.

MAX_ROLLOVER FILES = integer | UNLIMITED

Specifies the maximum number of files to retain in the file system. When the setting of
MAX_ROLLOVER_FILES=0 there is no limit imposed on the number of rollover files that will
be created. The default value is 0. The maximum number of files that can be specified is

224

2,147,483,647.

MAX_FILES = integer
Specifies the maximum number of audit files that can be created. Does not rollover to the

first file when the limit is reached. When the MAX_FILES limit is reached, any action that
causes additional audit events to be generated will fail with an error.

RESERVE_DISK_SPACE = { ON | OFF }

This option pre-allocates the file on the disk to the MAXSIZE value. Only applies if MAXSIZE is
not equal to UNLIMITED. The default value is OFF.

QUEUE_DELAY = integer
Determines the time in milliseconds that can elapse before audit actions are forced to be
processed. A value of 0 indicates synchronous delivery. The minimum settable query delay
value is 1000 (1 second), which is the default. The maximum is 2,147,483,647 (2,147,483.647
seconds or 24 days, 20 hours, 31 minutes, 23.647 seconds). Specifying an invalid number will
raise the error MSG_INVALID_QUEUE_DELAY.

ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION}

Indicates whether the instance writing to the target should fail, continue, or stop if SQL
Server cannot write to the audit log.

CONTINUE

SQL Server operations continue. Audit records are not retained. The audit continues to
attempt to log events and will resume if the failure condition is resolved. Selecting the
continue option can allow unaudited activity which could violate your security policies. Use
this option, when continuing operation of the Database Engine is more important than
maintaining a complete audit.

SHUTDOWN

Forces a server shut down when the server instance writing to the target cannot write data
to the audit target. The login issuing this must have the SHUTDOWN permission. If the
logon does not have this permission, this function will fail and an error message will be
raised. No audited events occur. Use the option when an audit failure could compromise
the security or integrity of the system.

FAIL_OPERATION

Database actions fail if they cause audited events. Actions which do not cause audited
events can continue, but no audited events can occur. The audit continues to attempt to
log events and will resume if the failure condition is resolved. Use this option when
maintaining a complete audit is more important than full access to the Database Engine.

STATE = {ON | OFF }

Enables or disables the audit from collecting records. Changing the state of a running audit
(from ON to OFF) creates an audit entry that the audit was stopped, the principal that
stopped the audit, and the time the audit was stopped.

225

MODIFY NAME = new_audit_name

Changes the name of the audit. Cannot be used with any other option.

predicate_expression

Specifies the predicate expression used to determine if an event should be processed or not.
Predicate expressions are limited to 3000 characters, which limits string arguments.

event_field_name
Is the name of the event field that identifies the predicate source. Audit fields are described
infn_get audit file (Transact-SQL). All fields can be audited except £ile name and
audit file offset.

number
Is any numeric type including decimal. Limitations are the lack of available physical memory
or a number that is too large to be represented as a 64-bit integer.

' string ’
Either an ANSI or Unicode string as required by the predicate compare. No implicit string

type conversion is performed for the predicate compare functions. Passing the wrong type
results in an error.

Remarks

You must specify at least one of the TO, WITH, or MODIFY NAME clauses when you call ALTER
AUDIT.

You must set the state of an audit to the OFF option in order to make changes to an audit. If
ALTER AUDIT is run when an audit is enabled with any options other than STATE=OFF, you will
receive a MSG_NEED_AUDIT_DISABLED error message.

You can add, alter, and remove audit specifications without stopping an audit.
You cannot change an audit's GUID after the audit has been created.

Permissions

To create, alter, or drop a server audit principal, you must have ALTER ANY SERVER AUDIT or the
CONTROL SERVER permission.

Examples

A. Changing a server audit name

The following example changes the name of the server audit HIPPA Audit to
HIPAA Audit Old.

USE master
GO
ALTER SERVER AUDIT HIPAA_Audit

WITH (STATE = OFF);

226

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�

GO

ALTER SERVER AUDIT HIPAA Audit
MODIFY NAME = HIPAA Audit 0Old;

GO

ALTER SERVER AUDIT HIPAA Audit Old
WITH (STATE = ON);

GO

B. Changing a server audit target
The following example changes the server audit called HIPPA Audit to a file target.
USE master
GO
ALTER SERVER AUDIT HIPAA Audit
WITH (STATE = OFF);
GO
ALTER SERVER AUDIT HIPAA Audit
TO FILE (FILEPATH ='\\SQLPROD 1\Audit\',
MAXSIZE = 1000 MB,

RESERVE DISK SPACE=OFF)

WITH (QUEUE DELAY 1000,

ON_FATILURE CONTINUE) ;
GO

ALTER SERVER AUDIT HIPAA Audit
WITH (STATE = ON);

GO

C. Changing a server audit WHERE clause

The following example modifies the where clause created in example C of CREATE SERVER
AUDIT (Transact-SQL). The new WHERE clause filters for the user defined event if of 27.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = OFF)

GO

ALTER SERVER AUDIT [FilterForSensitiveData]

WHERE user defined event id = 27;

GO

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = ON);

227

GO

D. Removing a WHERE clause

The following example removes a WHERE clause predicate expression.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE
GO

ALTER SERVER AUDIT [FilterForSensitiveData]

REMOVE WHERE;

GO

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE

GO

E. Renaming a server audit

The following example changes the server audit name from FilterForSensitiveData to

AuditDataAccess.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE
GO

ALTER SERVER AUDIT [FilterForSensitiveData]

MODIFY NAME = AuditDataAccess;

GO

ALTER SERVER AUDIT [AuditDataAccess] WITH (STATE = ON);
GO

See Also

DROP SERVER AUDIT (Transact-SQL)

CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)

fn get audit file (Transact-SQL)

sys.server audits (Transact-SQL)

sys.server file audits (Transact-SQL)

sys.server audit specifications (Transact-SQL)

sys.server audit specifications details (Transact-SQL)

OFF)

ON) ;

OFF)

228

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�

sys.database audit specifications (Transact-SQL)

sys.audit database specification details (Transact-SQL)

sys.dm server audit status

sys.dm audit actions

Create a Server Audit and Server Audit Specification

ALTER SERVER AUDIT SPECIFICATION

Alters a server audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

=k Transact-SQL Syntax Conventions

Syntax

ALTER SERVER AUDIT SPECIFICATION audit_specification_name
{

[FOR SERVER AUDIT audit_name]

[{{ADD | DROP} (audit_action_group_name)

Hoon]]

[WITH (STATE = {ON | OFF })]
}
(]
Arguments
audit_specification_name

The name of the audit specification.

audit_name

The name of the audit to which this specification is applied.

audit_action_group_name

Name of a group of server-level auditable actions. For a list of Audit Action Groups, see SQL
Server Audit Action Groups and Actions.

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification.

Remarks

You must set the state of an audit specification to the OFF option to make changes to an audit
specification. If ALTER SERVER AUDIT SPECIFICATION is executed when an audit specification is
enabled with any options other than STATE=OFF, you will receive an error message.

229

http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�

Permissions

Users with the ALTER ANY SERVER AUDIT permission can alter server audit specifications and
bind them to any audit.

After a server audit specification is created, it can be viewed by principals with the CONTROL
SERVER, or ALTER ANY SERVER AUDIT permissions, the sysadmin account, or principals having
explicit access to the audit.

Examples

The following example creates a server audit specification called HIPPA Audit Specification.
It drops the audit action group for failed logins, and adds an audit action group for Database
Object Access for a SQL Server audit called HIPPA Audit.

ALTER SERVER AUDIT SPECIFICATION HIPPA Audit Specification
FOR SERVER AUDIT HIPPA Audit
DROP (FAILED LOGIN GROUP)
ADD (DATABASE OBJECT ACCESS GROUP) ;
GO
For a full example about how to create an audit, see Understanding SQL Server Audit.

Updated content

Corrected the Permissions section.

See Also

CREATE SERVER AUDIT (Transact-SQL)

ALTER SERVER AUDIT (Transact-SQL)

DROP SERVER AUDIT (Transact-SQL)

CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)

fn get audit file (Transact-SQL)

sys.server audits (Transact-SQL)

sys.server file audits (Transact-SQL)

sys.server audit specifications (Transact-SQL)
sys.server audit specifications details (Transact-SQL)

230

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�

sys.database audit specifications (Transact-SQL)

sys.audit database specification details (Transact-SQL)

sys.dm server audit status

sys.dm audit actions

Create a Server Audit and Server Audit Specification

ALTER SERVER CONFIGURATION

Modifies global configuration settings for the current server in SQL Server 2012.

=5 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER CONFIGURATION
SET <optionspec>

<optionspec> ::=

{
<process_affinity>
| <diagnostic_log>
| <failover_cluster_property>
}

<process_affinity> ::=
PROCESS AFFINITY

CPU = { AUTO | <CPU_range_spec> }
| NUMANODE = <NUMA_node_range_spec>
}
<CPU_range_spec> ::=
{CPU_ID | CPU_ID TOCPUID}[,..n]

<NUMA _node_range_spec> ::=
{ NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID } [,..n]

<diagnostic_log> ::=
DIAGNOSTICS LOG

231

http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

{

ON
| OFF
| PATH = {'os_file_path' | DEFAULT }
| MAX_SIZE = {'log_max_size' MB | DEFAULT }
| MAX_FILES = { 'max_file_count' | DEFAULT }
}

<failover_cluster_property> ::=
FAILOVER CLUSTER PROPERTY <resource_property>

<resource_property>:=

Verboselogging = { 'logging_detail' | DEFAULT }
| SqIDumperDumpFlags = { 'dump_file_type' | DEFAULT }
| SqIDumperDumpPath = { 'os_file_path'| DEFAULT }
| SqIDumperDumpTimeOut = { 'dump_time-out' | DEFAULT }
| FailureConditionLevel = { 'failure_condition_|level' | DEFAULT }
| HealthCheckTimeout = { 'health_check_time-out' | DEFAULT }
}

Arguments
<process_affinity> ::=
PROCESS AFFINITY

Enables hardware threads to be associated with CPUs.
CPU = { AUTO | <CPU_range_spec> }

Distributes SQL Server worker threads to each CPU within the specified range. CPUs outside
the specified range will not have assigned threads.

AUTO

Specifies that no thread is assigned a CPU. The operating system can freely move threads
among CPUs based on the server workload. This is the default and recommended setting.

<CPU_range_spec> ::=

Specifies the CPU or range of CPUs to assign threads to.

{CPU_ID |CPU_ID TOCPU.ID}[,...n]

Is the list of one or more CPUs. CPU IDs begin at 0 and are integer values.

232

NUMANODE = <NUMA_node_range_spec>
Assigns threads to all CPUs that belong to the specified NUMA node or range of nodes.
<NUMA _node_range_spec> ::=
Specifies the NUMA node or range of NUMA nodes.
{ NUMA _node_ID | NUMA_node_ID TO NUMA node ID }[,...n]
Is the list of one or more NUMA nodes. NUMA node IDs begin at 0 and are integer values.
<diagnostic_log> ::=
DIAGNOSTICS LOG

Starts or stops logging diagnostic data captured by the sp_server_diagnostics procedure, and
sets SQLDIAG log configuration parameters such as the log file rollover count, log file size,
and file location. For more information, see How to: View and Read SOL Server
Failover Cluster Diagnostics Log.

ON
Starts SQL Server logging diagnostic data in the location specified in the PATH file option.
This is the default.
OFF
Stops logging diagnostic data.
PATH = { 'os_file_path' | DEFAULT }
Path indicating the location of the diagnostic logs. The default location is <\MSSQL\Log>
within the installation folder of the SQL Server failover cluster instance.
MAX_SIZE = { 'log_max_size’ MB | DEFAULT }
Maximum size in megabytes to which each diagnostic log can grow. The default is 100 MB.
MAX _FILES = { 'max_file_count’ | DEFAULT }
Maximum number of diagnostic log files that can be stored on the computer before they are
recycled for new diagnostic logs.
<failover_cluster_property> ::=
FAILOVER CLUSTER PROPERTY

Modifies the SQL Server resource private failover cluster properties.

VERBOSE LOGGING = { 'logging_detail' | DEFAULT }

Sets the logging level for SQL Server Failover Clustering. It can be turned on to provide
additional details in the error logs for troubleshooting.

e 0-Llogging is turned off (default)
e 1-Errorsonly

e 2 —Errors and warnings

233

http://msdn.microsoft.com/en-us/library/68074bd5-be9d-4487-a320-5b51ef8e2b2d(SQL.110)�
http://msdn.microsoft.com/en-us/library/68074bd5-be9d-4487-a320-5b51ef8e2b2d(SQL.110)�

SQLDUMPEREDUMPFLAGS

Determines the type of dump files generated by SQL Server SQLDumper utility. The default
setting is 0. For more information, see SQL Server Dumper Utility Knowledgebase
article.

SQLDUMPERDUMPPATH = { 'os_file_path’| DEFAULT }

The location where the SQLDumper utility stores the dump files. For more information, see
SQL Server Dumper Utility Knowledgebase article.

SQLDUMPERDUMPTIMEOUT = { '"dump_time-out’ | DEFAULT }

The time-out value in milliseconds for the SQLDumper utility to generate a dump in case of a
SQL Server failure. The default value is 0, which means there is no time limit to complete the
dump. For more information, see SQL Server Dumper Utility Knowledgebase
article.

FAILURECONDITIONLEVEL = { ‘failure_condition_level’' | DEFAULT }

Tthe conditions under which the SQL Server failover cluster instance should failover or
restart. The default value is 3, which means that the SQL Server resource will failover or
restart on critical server errors. For more information about this and other failure condition
levels, see How to: Configure FailureConditionLevel Property Settings.

HEALTHCHECKTIMEOUT = { 'health_check_time-out' | DEFAULT }

The time-out value for how long the SQL Server Database Engine resource DLL should wait
for the server health information before it considers the instance of SQL Server as
unresponsive. The time-out value is expressed in milliseconds. The default is 60000
milliseconds (60 seconds).

General Remarks

This statement does not require a restart of SQL Server. In the case of a SQL Server failover
cluster instance, it does not require a restart of the SQL Server cluster resource.
Limitations and Restrictions

This statement does not support DDL triggers.

Permissions

Requires ALTER SETTINGS permissions for the process affinity option; and ALTER SETTINGS and
VIEW SERVER STATE permissions for the diagnostic log and failover cluster property options.

The SQL Server Database Engine resource DLL runs under the Local System account. Therefore,
the Local System account must have read and write access to the specified path in the
Diagnostic Log option.

Examples

234

http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://msdn.microsoft.com/en-us/library/513dd179-9a46-46da-9fdd-7632cf6d0816(SQL.110)�

Catego Featured syntax elements
gory

Setting process affinity CPU « NUMANODE » AUTO
Setting diagnostic log options ON « OFF « PATH « MAX_SIZE
Setting failover cluster properties HealthCheckTimeout

Setting process affinity

The examples in this section show how to set process affinity to CPUs and NUMA nodes. The
examples assume that the server contains 256 CPUs that are arranged into four groups of 16
NUMA nodes each. Threads are not assigned to any NUMA node or CPU.

e Group 0: NUMA nodes 0 through 3, CPUs 0 to 63

e Group 1: NUMA nodes 4 through 7, CPUs 64 to 127

e Group 2: NUMA nodes 8 through 12, CPUs 128 to 191
e Group 3: NUMA nodes 13 through 16, CPUs 192 to 255

A. Setting affinity to all CPUs in groups 0 and 2
The following example sets affinity to all the CPUs in groups 0 and 2.
ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY CPU=0 TO 63, 128 TO 191;

B. Setting affinity to all CPUs in NUMA nodes 0 and 7
The following example sets the CPU affinity to nodes 0 and 7 only.
ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY NUMANODE=0, 7;

C. Setting affinity to CPUs 60 through 200
The following example sets affinity to CPUs 60 through 200.
ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY CPU=60 TO 200;

D. Setting affinity to CPU 0 on a system that has two CPUs

The following example sets the affinity to cPu=0 on a computer that has two CPUs. Before the
following statement is executed the internal affinity bitmask is 00.

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY CPU=0;

E. Setting affinity to AUTO
The following example sets affinity to auTo.

ALTER SERVER CONFIGURATION

235

SET PROCESS AFFINITY CPU=AUTO;

Setting diagnostic log options

The examples in this section show how to set the values for the diagnostic log option.
A. Starting diagnostic logging

The following example starts the logging of diagnostic data.

ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG ON;

B. Stopping diagnostic logging

The following example stops the logging of diagnostic data.

ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG OFF;

C. Specifying the location of the diagnostic logs
The following example sets the location of the diagnostic logs to the specified file path.
ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG PATH = 'C:\logs';

D. Specifying the maximum size of each diagnostic log
The following example set the maximum size of each diagnostic log to 10 megabytes.
ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG MAX SIZE = 10 MB;

Setting failover cluster properties

The following example illustrates setting the values of the SQL Server failover cluster resource
properties.

A. Specifying the value for the HealthCheckTimeout property

The following example sets the HealthCheckTimeout option to 15,000 milliseconds (15
seconds).

ALTER SERVER CONFIGURATION

SET FAILOVER CLUSTER PROPERTY HealthCheckTimeout = 15000;

See Also
How to: Configure SQL Server to Use Soft-NUMA

sys.dm os schedulers (Transact-SQL)

sys.dm os memory nodes (Transact-SQL)

ALTER SERVER ROLE

Changes the membership of a server role or changes name of a user-defined server role. Fixed
server roles cannot be renamed.

236

http://msdn.microsoft.com/en-us/library/1af22188-e08b-4c80-a27e-4ae6ed9ff969(SQL.110)�
http://msdn.microsoft.com/en-us/library/3a09d81b-55d5-416f-9cda-1a3a5492abe0(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf4032fe-7db1-40e9-a62e-d69cebff4b44(SQL.110)�

=5 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER ROLE server _role_name
{
[ADD MEMBER server_principal]
| [DROP MEMBER server_principal]
| [WITH NAME = new_server_role_ name]
Yo
Arguments

server_role_name

Is the name of the server role to be changed.

ADD MEMBER server_principal

Adds the specified server principal to the server role. server_principal can be a login or a user-
defined server role. server_principal cannot be a fixed server role, a database role, or sa.

DROP MEMBER server_principal

Removes the specified server principal from the server role. server._principal can be a login or
a user-defined server role. server._principal cannot be a fixed server role, a database role, or
sa.

WITH NAME = new_server_role_name

Specifies the new name of the user-defined server role. This name cannot already exist in the
server.

Remarks

Changing the name of a user-defined server role does not change ID number, owner, or
permissions of the role.

For changing role membership, ALTER SERVER ROLE replaces sp_addsrvrolemember and
sp_dropsrvrolemember. These stored procedures are deprecated.

You can view server roles by querying the sys.server_role_members and sys.server_principals
catalog views.

To change the owner of a user-defined server role, use ALTER AUTHORIZATION (Transact-SQL).

Permissions

Requires ALTER ANY SERVER ROLE permission on the server to change the name of a user-
defined server role.

Fixed server roles

237

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

To add a member to a fixed server role, you must be a member of that fixed server role, or be a
member of the sysadmin fixed server role.

The CONTROL SERVER and ALTER ANY SERVER ROLE permissions are not sufficient to
execute ALTER SERVER ROLE for a fixed server role, and ALTER permission cannot be
granted on a fixed server role.

User-defined server roles

To add a member to a user-defined server role, you must be a member of the sysadmin fixed
server role or have CONTROL SERVER or ALTER ANY SERVER ROLE permission. Or you must
have ALTER permission on that role.

Unlike fixed server roles, members of a user-defined server role do not inherently have
permission to add members to that same role.

Examples

A. Changing the name of a server role

The following example creates a server role named product, and then changes the name of
server role to Production.

CREATE SERVER ROLE Product ;
ALTER SERVER ROLE Product WITH NAME = Production ;

GO

B. Adding a domain account to a server role

The following example adds a domain account named adventure-works\roberto0 to the
user-defined server role named pProduction.

ALTER SERVER ROLE Production ADD MEMBER [adventure-works\robertoO] ;

C. Adding a SQL Server login to a server role

The following example adds a SQL Server login named Ted to the diskadmin fixed server role.
ALTER SERVER ROLE diskadmin ADD MEMBER Ted ;

GO

D. Removing a domain account from a server role

The following example removes a domain account named adventure-works\roberto0 from
the user-defined server role named Production.

ALTER SERVER ROLE Production DROP MEMBER [adventure-works\roberto0O] ;

E. Removing a SQL Server login from a server role
The following example removes the SQL Server login Ted from the diskadmin fixed server role.

238

ALTER SERVER ROLE Production DROP MEMBER Ted ;
GO

F. Granting a login the permission to add logins to a user-defined server role

The following example allows Ted to add other logins to the user-defined server role named
Production.

GRANT ALTER ON SERVER ROLE: :Production TO Ted ;
GO

G. To view role membership

To view role membership, use the Server Role (Members) page in SQL Server Management
Studio or execute the following query:

SELECT SRM.role principal id, SP.name AS Role Name,
SRM.member principal id, SP2.name AS Member Name
FROM sys.server role members AS SRM
JOIN sys.server principals AS SP

ON SRM.Role principal id = SP.principal id
JOIN sys.server principals AS SP2

ON SRM.member principal id = SP2.principal id

ORDER BY SP.name, SP2.name

See Also

CREATE SERVER ROLE (Transact-SQL)
DROP SERVER ROLE (Transact-SQL)
CREATE ROLE (Transact-SQL)

ALTER ROLE (Transact-SQL)

DROP ROLE (Transact-SQL)

Security Stored Procedures (Transact-SQL)

Security Functions (Transact-SQL)

Principals
sys.server role members (Transact-SOL)

sys.server principals (Transact-SQL)

ALTER SERVICE

Changes an existing service.
=5 Transact-SQL Syntax Conventions

239

http://msdn.microsoft.com/en-us/library/62b72907-7e95-4c97-9891-0c45d5b678ce(SQL.110)�
http://msdn.microsoft.com/en-us/library/7773a87d-2f1b-4951-a225-baf159a7291b(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/efa20414-2c6b-45a2-a7a9-60110a24da18(SQL.110)�
http://msdn.microsoft.com/en-us/library/c5dbe0d8-a1c8-4dc4-b9b1-22af20effd37(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

Syntax

ALTER SERVICE service name
[ON QUEUE [schema_name .]queue_name]
[(<opt_arg>[,.n])]

(]

<opt_arg> :=
ADD CONTRACT contract_name | DROP CONTRACT contract_name
Arguments
service_name
Is the name of the service to change. Server, database, and schema names cannot be
specified.
ON QUEUE [schema_name.] queue_name
Specifies the new queue for this service. Service Broker moves all messages for this service
from the current queue to the new queue.
ADD CONTRACT contract_name

Specifies a contract to add to the contract set exposed by this service.

DROP CONTRACT contract_name

Specifies a contract to delete from the contract set exposed by this service. Service Broker
sends an error message on any existing conversations with this service that use this contract.

Remarks

When the ALTER SERVICE statement deletes a contract from a service, the service can no longer
be a target for conversations that use that contract. Therefore, Service Broker does not allow
new conversations to the service on that contract. Existing conversations that use the contract
are unaffected.

To alter the AUTHORIZATION for a service, use the ALTER AUTHORIZATION statement.

Permissions

Permission for altering a service defaults to the owner of the service, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.

Examples

A. Changing the queue for a service

The following example changes the //adventure-Works.com/Expenses service to use the
queue NewQueue.

240

www.Adventure-Works.com/Expenses

ALTER SERVICE [//Adventure-Works.com/Expenses]

ON QUEUE NewQueue ;

B. Adding a new contract to the service

The following example changes the //adventure-Works.com/Expenses service to allow
dialogs on the contract //Adventure-Works.com/Expenses.

ALTER SERVICE [//Adventure-Works.com/Expenses]

(ADD CONTRACT [//Adventure-Works.com/Expenses/ExpenseSubmission]) ;

C. Adding a new contract to the service, dropping existing contract

The following example changes the //adventure-wWorks.com/Expenses service to allow
dialogs on the contract //Adventure-Works.com/Expenses/ExpenseProcessing and to
disallow dialogs on the contract //Adventure-Works.com/Expenses/ExpenseSubmission.

ALTER SERVICE [//Adventure-Works.com/Expenses]
(ADD CONTRACT [//Adventure-Works.com/Expenses/ExpenseProcessing],

DROP CONTRACT [//Adventure-Works.com/Expenses/ExpenseSubmission]) ;

See Also

DROP SERVICE (Transact-SQL)
DROP SERVICE

EVENTDATA

ALTER SERVICE MASTER KEY

Changes the service master key of an instance of SQL Server.
= Transact-SQL Syntax Conventions

Syntax

ALTER SERVICE MASTER KEY
[{ <regenerate_option> | <recover_option> }] [;]

<regenerate_option> ::=
[FORCE] REGENERATE

<recover_option> ::=
{ WITH OLD_ACCOUNT = 'account_name' , OLD_PASSWORD = 'password' }

|
{ WITH NEW_ACCOUNT = 'account_name' , NEW_PASSWORD = 'password' }

241

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses/ExpenseSubmission

Arguments
FORCE

Indicates that the service master key should be regenerated, even at the risk of data loss. For
more information, see Changing the SQL Server Service Account later in this topic.

REGENERATE

Indicates that the service master key should be regenerated.

OLD_ACCOUNT = 'account_name’

Specifies the name of the old Windows service account.

1\ Warning

This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

OLD_PASSWORD = 'password’

Specifies the password of the old Windows service account.

% Warning

This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

NEW_ACCOUNT = 'account_name’

Specifies the name of the new Windows service account.

1\ Warning

This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

NEW_PASSWORD = 'password’

Specifies the password of the new Windows service account.
A Warning
This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

Remarks

The service master key is automatically generated the first time it is needed to encrypt a linked
server password, credential, or database master key. The service master key is encrypted using
the local machine key or the Windows Data Protection API This API uses a key that is derived
from the Windows credentials of the SQL Server service account.

The service master key can only be decrypted by the service account under which it was created
or by a principal that has access to the Windows credentials of that service account. Therefore, if
you change the Windows account under which the SQL Server service runs, you must also
enable decryption of the service master key by the new account.

SQL Server 2012 uses the AES encryption algorithm to protect the service master key (SMK) and
the database master key (DMK). AES is a newer encryption algorithm than 3DES used in earlier
versions. After upgrading an instance of the Database Engine to SQL Server 2012 the SMK and

242

DMK should be regenerated in order to upgrade the master keys to AES. For more information
about regenerating the DMK, see ALTER MASTER KEY (Transact-SQL).

Changing the SQL Server Service Account

To change the SQL Server service account, use SQL Server Configuration Manager. To manage a
change of the service account, SQL Server stores a redundant copy of the service master key
protected by the machine account that has the necessary permissions granted to the SQL
Server service group. If the computer is rebuilt, the same domain user that was previously used
by the service account can recover the service master key. This does not work with local
accounts or the Local System, Local Service, or Network Service accounts. When you are
moving SQL Server to another computer, migrate the service master key by using backup and
restore.

The REGENERATE phrase regenerates the service master key. When the service master key is
regenerated, SQL Server decrypts all the keys that have been encrypted with it, and then
encrypts them with the new service master key. This is a resource-intensive operation. You
should schedule this operation during a period of low demand, unless the key has been
compromised. If any one of the decryptions fail, the whole statement fails.

The FORCE option causes the key regeneration process to continue even if the process cannot
retrieve the current master key, or cannot decrypt all the private keys that are encrypted with it.
Use FORCE only if regeneration fails and you cannot restore the service master key by using the
RESTORE SERVICE MASTER KEY statement.

@ caution
The service master key is the root of the SQL Server encryption hierarchy. The service
master key directly or indirectly protects all other keys and secrets in the tree. If a
dependent key cannot be decrypted during a forced regeneration, the data the key
secures will be lost.

The MACHINE KEY options allow you to add or drop encryption using the machine key.

Permissions
Requires CONTROL SERVER permission on the server.

Examples

The following example regenerates the service master key.
ALTER SERVICE MASTER KEY REGENERATE;

GO

See Also

RESTORE SERVICE MASTER KEY (Transact-SQL)
BACKUP SERVICE MASTER KEY (Transact-SQL)
Encryption Hierarchy

243

http://msdn.microsoft.com/en-us/library/a68fd0ee-70ce-4104-aca0-fcae5f41fc38(SQL.110)�
http://msdn.microsoft.com/en-us/library/a68fd0ee-70ce-4104-aca0-fcae5f41fc38(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8356683-6680-4f1c-9eaf-5c29a9a9020d(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�

ALTER SYMMETRIC KEY

Changes the properties of a symmetric key.
=5 Transact-SQL Syntax Conventions

Syntax
ALTER SYMMETRIC KEY Key_name <alter_option>

<alter_option> ::=
ADD ENCRYPTION BY <encrypting_mechanism> [, ..n]

|
DROP ENCRYPTION BY <encrypting_mechanism> [, .. n]

<encrypting_mechanism> ::=
CERTIFICATE certificate name

|
PASSWORD = 'password’

SYMMETRIC KEY Symmetric_Key Name

|
ASYMMETRIC KEY Asym Key Name

Arguments
Key_name
Is the name by which the symmetric key to be changed is known in the database.
ADD ENCRYPTION BY
Adds encryption by using the specified method.
DROP ENCRYPTION BY

Drops encryption by the specified method. You cannot remove all the encryptions from a
symmetric key.

CERTIFICATE Certificate_name

Specifies the certificate that is used to encrypt the symmetric key. This certificate must
already exist in the database.

PASSWORD = 'password’

Specifies the password that is used to encrypt the symmetric key. password must meet the

Windows password policy requirements of the computer that is running the instance of SQL
Server.

244

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

SYMMETRIC KEY Symmetric_Key_Name

Specifies the symmetric key that is used to encrypt the symmetric key that is being changed.
This symmetric key must already exist in the database and must be open.

ASYMMETRIC KEY Asym_Key_Name

Specifies the asymmetric key that is used to encrypt the symmetric key that is being changed.
This asymmetric key must already exist in the database.

Remarks

@ caution
When a symmetric key is encrypted with a password instead of with the public key of the
database master key, the TRIPLE_DES encryption algorithm is used. Because of this, keys
that are created with a strong encryption algorithm, such as AES, are themselves secured
by a weaker algorithm.
To change the encryption of the symmetric key, use the ADD ENCRYPTION and DROP
ENCRYPTION phrases. It is never possible for a key to be entirely without encryption. For this
reason, the best practice is to add the new form of encryption before removing the old form of
encryption.

To change the owner of a symmetric key, use ALTER AUTHORIZATION.

The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

Permissions

Requires ALTER permission on the symmetric key. If adding encryption by a certificate or
asymmetric key, requires VIEW DEFINITION permission on the certificate or asymmetric key. If
dropping encryption by a certificate or asymmetric key, requires CONTROL permission on the
certificate or asymmetric key.

Examples

The following example changes the encryption method that is used to protect a symmetric key.
The symmetric key JanainaKey043 is encrypted using certificate shipping04 when the key was
created. Because the key can never be stored unencrypted, in this example, encryption is added
by password, and then encryption is removed by certificate.

CREATE SYMMETRIC KEY JanainaKey043 WITH ALGORITHM = AES 256
ENCRYPTION BY CERTIFICATE Shipping04;
-- Open the key.

OPEN SYMMETRIC KEY JanainaKey043 DECRYPTION BY CERTIFICATE Shipping04

245

WITH PASSWORD = '<enterStrongPasswordHere>';
-- First, encrypt the key with a password.
ALTER SYMMETRIC KEY JanainaKey043
ADD ENCRYPTION BY PASSWORD = '<enterStrongPasswordHere>';
-- Now remove encryption by the certificate.
ALTER SYMMETRIC KEY JanainaKey043
DROP ENCRYPTION BY CERTIFICATE Shipping04;

CLOSE SYMMETRIC KEY JanainaKey043;

See Also

Encryption Hierarchy

OPEN SYMMETRIC KEY (Transact-SQL)
CLOSE SYMMETRIC KEY (Transact-SQL)
DROP SYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy

ALTER TABLE

Modifies a table definition by altering, adding, or dropping columns and constraints, reassigning
partitions, or disabling or enabling constraints and triggers.

=k Transact-SQL Syntax Conventions

Syntax

ALTER TABLE [database_name . [schema name].|schema name .] table name

{
ALTER COLUMN column_name

{
[type_schema_name. | type_name [({ precision [, scale]
| max | xm1_schema_collection})]
[COLLATE collation_name]
[NULL | NOT NULL] [SPARSE]
| {ADD | DROP }
{ ROWGUIDCOL | PERSISTED | NOT FOR REPLICATION | SPARSE }

| [WITH { CHECK | NOCHECK }]

246

http://msdn.microsoft.com/en-us/library/ff019a7c-c373-46c7-ac43-ffb7e2ee60b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b083cbb-3c6a-4f59-8d34-601db1efcc83(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

| ADD
{
<column_definition>
| <computed column_definition>
| <table constraint>
| <column_set_definition>

}lsem]

| DROP

{
[CONSTRAINT] constraint _name
[WITH (<drop_clustered_constraint_option> [,..n])]
| COLUMN column_name

}lsn]

| [WITH { CHECK | NOCHECK }] { CHECK | NOCHECK } CONSTRAINT

{ ALL | constraint_name [,.n |}

| { ENABLE | DISABLE } TRIGGER
{ALL| trigger_name [,..n]}

| { ENABLE | DISABLE } CHANGE_TRACKING
[WITH (TRACK_COLUMNS_UPDATED = { ON | OFF })]

| SWITCH [PARTITION source_partition_number_ expression]
TO target_table
[PARTITION target_partition_number_ expression]

| SET (FILESTREAM_ON = { partition_scheme name | filegroup |
"default™ | "NULL" })

| REBUILD
[[PARTITION = ALL]
[WITH (<rebuild option> [,.n])]
| [PARTITION = partition_number

247

[WITH (<single_partition_rebuild_option>[,..n])]

| (<table_option>)

| (<filetable_option>)

-- ALTER TABLE options

<column_set_definition> ::=
column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

<drop_clustered_constraint_option> ::=

{
MAXDOP = max_degree of_parallelism

| ONLINE = {ON | OFF }
| MOVE TO { partition_scheme name (column_name) | filegroup
| "default™ }
}
<table_option> ::=
{
SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE })

<filetable_option> ::=
{
[{ ENABLE | DISABLE } FILETABLE_NAMESPACE]
[SET (FILETABLE_DIRECTORY = directory name)]

248

}

<single_partition_rebuild__option> ::=

{
SORT_IN_TEMPDB = { ON | OFF }
| MAXDOP = max_degree of parallelism
| DATA_COMPRESSION = { NONE | ROW | PAGE} }
}
Arguments

database_name

Is the name of the database in which the table was created.

schema_name

Is the name of the schema to which the table belongs.

table_name
Is the name of the table to be altered. If the table is not in the current database or is not
contained by the schema owned by the current user, the database and schema must be
explicitly specified.
ALTER COLUMN
Specifies that the named column is to be changed or altered.
The modified column cannot be any one of the following:
e A column with a timestamp data type.
e The ROWGUIDCOL for the table.
e A computed column or used in a computed column.

e Used in an index, unless the column is a varchar, nvarchar, or varbinary data type, the
data type is not changed, the new size is equal to or larger than the old size, and the
index is not the result of a PRIMARY KEY constraint.

e Used in statistics generated by the CREATE STATISTICS statement unless the column is a
varchar, nvarchar, or varbinary data type, the data type is not changed, and the new
size is equal to or greater than the old size, or if the column is changed from not null to
null. First, remove the statistics using the DROP STATISTICS statement. Statistics that are
automatically generated by the query optimizer are automatically dropped by ALTER
COLUMN.

e Used in a PRIMARY KEY or [FOREIGN KEY] REFERENCES constraint.

e Used in a CHECK or UNIQUE constraint. However, changing the length of a variable-
length column used in a CHECK or UNIQUE constraint is allowed.

e Associated with a default definition. However, the length, precision, or scale of a column
can be changed if the data type is not changed.

249

The data type of text, ntext and image columns can be changed only in the following
ways:

e text to varchar(max), nvarchar(max), or xml
e ntext to varchar(max), nvarchar(max), or xml
e image to varbinary(max)

Some data type changes may cause a change in the data. For example, changing an
nchar or nvarchar column to char or varchar may cause the conversion of extended
characters. For more information, see CAST and CONVERT. Reducing the precision
or scale of a column may cause data truncation.

The data type of a column of a partitioned table cannot be changed.

column_name
Is the name of the column to be altered, added, or dropped. column_name can be a
maximum of 128 characters. For new columns, column_name can be omitted for columns
created with a timestamp data type. The name timestamp is used if no column_name is
specified for a timestamp data type column.

[type_schema_name.] type_name

Is the new data type for the altered column, or the data type for the added column.
type_name cannot be specified for existing columns of partitioned tables. type_name can be
any one of the following:

e A SQL Server system data type.

e An alias data type based on a SQL Server system data type. Alias data types are created
with the CREATE TYPE statement before they can be used in a table definition.

e A NET Framework user-defined type, and the schema to which it belongs. .NET
Framework user-defined types are created with the CREATE TYPE statement before they
can be used in a table definition.

The following are criteria for type_name of an altered column:
e The previous data type must be implicitly convertible to the new data type.

e type_name cannot be timestamp.

ANSI_NULL defaults are always on for ALTER COLUMN,; if not specified, the column is
nullable.

ANSI_PADDING padding is always ON for ALTER COLUMN.

If the modified column is an identity column, new_data_type must be a data type that
supports the identity property.

e The current setting for SET ARITHABORT is ignored. ALTER TABLE operates as if
ARITHABORT is set to ON.

If the COLLATE clause is not specified, changing the data type of a column will cause a collation

250

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�

change to the default collation of the database.

precision

Is the precision for the specified data type. For more information about valid precision values,
see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see
Precision, Scale, and Length.

max
Applies only to the varchar, nvarchar, and varbinary data types for storing 2231-1 bytes of
character, binary data, and of Unicode data.

xml_schema_collection

Applies only to the xml data type for associating an XML schema with the type. Before typing
an xml column to a schema collection, the schema collection must first be created in the

database by using CREATE XML SCHEMA COLLECTION.

COLLATE < collation_name >

Specifies the new collation for the altered column. If not specified, the column is assigned the
default collation of the database. Collation name can be either a Windows collation name or
a SQL collation name. For a list and more information, see Windows Collation Name
and SQL Collation Name.

The COLLATE clause can be used to change the collations only of columns of the char,
varchar, nchar, and nvarchar data types. To change the collation of a user-defined alias data
type column, you must execute separate ALTER TABLE statements to change the column to a
SQL Server system data type and change its collation, and then change the column back to
an alias data type.

ALTER COLUMN cannot have a collation change if one or more of the following conditions

exist:

e If a CHECK constraint, FOREIGN KEY constraint, or computed columns reference the
column changed.

e If any index, statistics, or full-text index are created on the column. Statistics created
automatically on the column changed are dropped if the column collation is changed.
e If a schema-bound view or function references the column.

For more information, see COLLATE.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not allow null values
can be added with ALTER TABLE only if they have a default specified or if the table is empty.
NOT NULL can be specified for computed columns only if PERSISTED is also specified. If the
new column allows null values and no default is specified, the new column contains a null
value for each row in the table. If the new column allows null values and a default definition is

251

http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�

added with the new column, WITH VALUES can be used to store the default value in the new
column for each existing row in the table.

If the new column does not allow null values and the table is not empty, a DEFAULT
definition must be added with the new column, and the new column automatically loads with
the default value in the new columns in each existing row.

NULL can be specified in ALTER COLUMN to force a NOT NULL column to allow null values,
except for columns in PRIMARY KEY constraints. NOT NULL can be specified in ALTER
COLUMN only if the column contains no null values. The null values must be updated to
some value before the ALTER COLUMN NOT NULL is allowed, for example:

UPDATE MyTable SET NullCol = N'some value' WHERE NullCol IS
NULL;

ALTER TABLE MyTable ALTER COLUMN NullCOl NVARCHAR (20) NOT
NULL;

When you create or alter a table with the CREATE TABLE or ALTER TABLE statements, the
database and session settings influence and possibly override the nullability of the data type
that is used in a column definition. We recommend that you always explicitly define a column
as NULL or NOT NULL for noncomputed columns.

If you add a column with a user-defined data type, we recommend that you define the
column with the same nullability as the user-defined data type and specify a default value for
the column. For more information, see CREATE TABLE.

If NULL or NOT NULL is specified with ALTER COLUMN, new_data_type [(precision [, scale)] must also
be specified. If the data type, precision, and scale are not changed, specify the current column values.

[{ADD | DROP} ROWGUIDCOL]

Specifies the ROWGUIDCOL property is added to or dropped from the specified column.
ROWGUIDCOL indicates that the column is a row GUID column. Only one uniqueidentifier
column per table can be designated as the ROWGUIDCOL column, and the ROWGUIDCOL
property can be assigned only to a uniqueidentifier column. ROWGUIDCOL cannot be
assigned to a column of a user-defined data type.

ROWGUIDCOL does not enforce uniqueness of the values that are stored in the column and
does not automatically generate values for new rows that are inserted into the table. To
generate unique values for each column, either use the NEWID function on INSERT
statements or specify the NEWID function as the default for the column.

[{ADD | DROP} PERSISTED]

Specifies that the PERSISTED property is added to or dropped from the specified column. The
column must be a computed column that is defined with a deterministic expression. For
columns specified as PERSISTED, the Database Engine physically stores the computed values
in the table and updates the values when any other columns on which the computed column
depends are updated. By marking a computed column as PERSISTED, you can create indexes

252

on computed columns defined on expressions that are deterministic, but not precise. For
more information, see Creating Indexes on Computed Columns.

Any computed column that is used as a partitioning column of a partitioned table must be
explicitly marked PERSISTED.

DROP NOT FOR REPLICATION

Specifies that values are incremented in identity columns when replication agents perform
insert operations. This clause can be specified only if column_name is an identity column.

SPARSE

Indicates that the column is a sparse column. The storage of sparse columns is optimized for
null values. Sparse columns cannot be designated as NOT NULL. Converting a column from
sparse to nonsparse or from nonsparse to sparse locks the table for the duration of the
command execution. You may need to use the REBUILD clause to reclaim any space savings.
For additional restrictions and more information about sparse columns, see USing Sparse
Columns.

WITH CHECK | WITH NOCHECK

Specifies whether the data in the table is or is not validated against a newly added or re-
enabled FOREIGN KEY or CHECK constraint. If not specified, WITH CHECK is assumed for new
constraints, and WITH NOCHECK is assumed for re-enabled constraints.

If you do not want to verify new CHECK or FOREIGN KEY constraints against existing data,
use WITH NOCHECK. We do not recommend doing this, except in rare cases. The new
constraint will be evaluated in all later data updates. Any constraint violations that are
suppressed by WITH NOCHECK when the constraint is added may cause future updates to
fail if they update rows with data that does not comply with the constraint.

The query optimizer does not consider constraints that are defined WITH NOCHECK. Such
constraints are ignored until they are re-enabled by using ALTER TABLE table WITH
CHECK CHECK CONSTRAINT ALL.

ADD
Specifies that one or more column definitions, computed column definitions, or table
constraints are added.

DROP { [CONSTRAINT] constraint_name | COLUMN column_name }

Specifies that constraint_name or column_name is removed from the table. Multiple columns
and constraints can be listed.

The user-defined or system-supplied name of the constraint can be determined by querying
the sys.check_constraint, sys.default_constraints, sys.key_constraints, and
sys.foreign_keys catalog views.

A PRIMARY KEY constraint cannot be dropped if an XML index exists on the table.
A column cannot be dropped when it is:

e Usedin an index.

253

http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�

e Used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint.

e Associated with a default that is defined with the DEFAULT keyword, or bound to a
default object.

e Boundtoarule.

.J Note

Dropping a column does not reclaim the disk space of the column. You may have to reclaim the disk
space of a dropped column when the row size of a table is near, or has exceeded, its limit. Reclaim
space by creating a clustered index on the table or rebuilding an existing clustered index by using

ALTER INDEX.
WITH <drop_clustered_constraint_option>

Specifies that one or more drop clustered constraint options are set.

MAXDOP = max_degree_of parallelism

Overrides the max degree of parallelism configuration option only for the duration of the
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option.

Use the MAXDOP option to limit the number of processors used in parallel plan execution.
The maximum is 64 processors.

max_degree_of_parallelism can be one of the following values:
1

Suppresses parallel plan generation.
>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Parallel index operations are not available in every edition of SQL Server. For more information, see
Features Supported by the Editions of SQL Server 2012.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF. REBUILD can be performed as an
ONLINE operation.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source

254

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

table. This enables queries or updates to the underlying table and indexes to continue. At
the start of the operation, a Shared (S) lock is held on the source object for a very short
time. At the end of the operation, for a short time, an S (Shared) lock is acquired on the
source if a nonclustered index is being created; or an SCH-M (Schema Modification) lock is
acquired when a clustered index is created or dropped online and when a clustered or
nonclustered index is being rebuilt. ONLINE cannot be set to ON when an index is being
created on a local temporary table. Only single-threaded heap rebuild operation is
allowed.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered index, or rebuilds or drops a nonclustered index,
acquires a Schema modification (Sch-M) lock on the table. This prevents all user access to
the underlying table for the duration of the operation. An offline index operation that
creates a nonclustered index acquires a Shared (S) lock on the table. This prevents updates
to the underlying table but allows read operations, such as SELECT statements. Multi-
threaded heap rebuild operations are allowed.

For more information, see How Online Index Operations Work.

Online index operations are not available in every edition of SQL Server. For more information, see
Features Supported by the Editions of SQL Server 2012.

MOVE TO { partition_scheme_name (column_name [1, ... n]) | filegroup | "default” }

Specifies a location to move the data rows currently in the leaf level of the clustered index.
The table is moved to the new location. This option applies only to constraints that create a
clustered index.

In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in MOVE TO "default” or MOVE TO [default]. If "default” is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting. For more
information, see SET QUOTED IDENTIFIER (Transact-SOL).

{ CHECK | NOCHECK } CONSTRAINT

Specifies that constraint_name is enabled or disabled. This option can only be used with
FOREIGN KEY and CHECK constraints. When NOCHECK is specified, the constraint is disabled
and future inserts or updates to the column are not validated against the constraint
conditions. DEFAULT, PRIMARY KEY, and UNIQUE constraints cannot be disabled.

ALL

Specifies that all constraints are either disabled with the NOCHECK option or enabled with
the CHECK option.

255

http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

{ ENABLE | DISABLE } TRIGGER
Specifies that trigger_name is enabled or disabled. When a trigger is disabled it is still defined
for the table; however, when INSERT, UPDATE, or DELETE statements are executed against the
table, the actions in the trigger are not performed until the trigger is re-enabled.

ALL
Specifies that all triggers in the table are enabled or disabled.

trigger_name

Specifies the name of the trigger to disable or enable.

{ ENABLE | DISABLE } CHANGE_TRACKING

Specifies whether change tracking is enabled disabled for the table. By default, change
tracking is disabled.

This option is available only when change tracking is enabled for the database. For more

information, see ALTER DATABASE SET Options (Transact-SQL).

To enable change tracking, the table must have a primary key.

WITH (TRACK_COLUMNS_UPDATED = { ON | OFF })

Specifies whether the Database Engine tracks which change tracked columns were updated.
The default value is OFF.

SWITCH [PARTITION source_partition_number_expression] TO [schema_name.]
target_table [PARTITION target_ partition_number_expression]

Switches a block of data in one of the following ways:
e Reassigns all data of a table as a partition to an already-existing partitioned table.
e Switches a partition from one partitioned table to another.

e Reassigns all data in one partition of a partitioned table to an existing non-partitioned
table.

If table is a partitioned table, source_partition_number_expression must be specified. If
target_table is partitioned, target_partition_number_expression must be specified. If
reassigning a table's data as a partition to an already-existing partitioned table, or switching
a partition from one partitioned table to another, the target partition must exist and it must
be empty.

If reassigning one partition's data to form a single table, the target table must already be
created and it must be empty. Both the source table or partition, and the target table or
partition, must reside in the same filegroup. The corresponding indexes, or index partitions,
must also reside in the same filegroup. Many additional restrictions apply to switching
partitions. table and target_table cannot be the same. target_table can be a multi-part
identifier.

source_partition_number_expression and target_partition_number_expression are constant
expressions that can reference variables and functions. These include user-defined type
variables and user-defined functions. They cannot reference Transact-SQL expressions.

256

For SWITCH restriction when using replication, see Replicate Partitioned Tables and
Indexes.

SET (FILESTREAM _ON = { partition_scheme_name | filestream_filegroup_name |
"default” | "NULL" })

Specifies where FILESTREAM data is stored.
ALTER TABLE with the SET FILESTREAM_ON clause will succeed only if the table has no

FILESTREAM columns. The FILESTREAM columns can be added by using a second ALTER
TABLE statement.

If partition_scheme_name is specified, the rules for CREATE TABLE apply. The table should
already be partitioned for row data, and its partition scheme must use the same partition
function and columns as the FILESTREAM partition scheme.

filestream_filegroup_name specifies the name of a FILESTREAM filegroup. The filegroup must
have one file that is defined for the filegroup by using a CREATE DATABASE or ALTER
DATABASE statement, or an error is raised.

"default” specifies the FILESTREAM filegroup with the DEFAULT property set. If there is no
FILESTREAM filegroup, an error is raised.

"NULL" specifies that all references to FILESTREAM filegroups for the table will be removed.
All FILESTREAM columns must be dropped first. You must use SET FILESTREAM_ON="NULL"
to delete all FILESTREAM data that is associated with a table.

SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE })
Specifies the allowed methods of lock escalation for a table.
AUTO

This option allows SQL Server Database Engine to select the lock escalation granularity that
is appropriate for the table schema.

e If the table is partitioned, lock escalation will be allowed to partition. After the lock is
escalated to the partition level, the lock will not be escalated later to TABLE
granularity.

e If the table is not partitioned, the lock escalation will be done to the TABLE granularity.

TABLE
Lock escalation will be done at table-level granularity regardless whether the table is
partitioned or not partitioned. This behavior is the same as in SQL Server 2005. TABLE is
the default value.

DISABLE

Prevents lock escalation in most cases. Table-level locks are not completely disallowed. For
example, when you are scanning a table that has no clustered index under the serializable
isolation level, Database Engine must take a table lock to protect data integrity.

REBUILD
Use the REBUILD WITH syntax to rebuild an entire table including all the partitions in a

257

http://msdn.microsoft.com/en-us/library/c9fa81b1-6c81-4c11-927b-fab16301a8f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c9fa81b1-6c81-4c11-927b-fab16301a8f5(SQL.110)�

partitioned table. If the table has a clustered index, the REBUILD option rebuilds the clustered
index. REBUILD can be performed as an ONLINE operation.

Use the REBUILD PARTITION syntax to rebuild a single partition in a partitioned table.

PARTITION = ALL

Rebuilds all partitions when changing the partition compression settings.

REBUILD WITH (<rebuild_option>)

All options apply to a table with a clustered index. If the table does not have a clustered
index, the heap structure is only affected by some of the options.

When a specific compression setting is not specified with the REBUILD operation, the current
compression setting for the partition is used. To return the current setting, query the
data_compression column in the sys.partitions catalog view.

For complete descriptions of the rebuild options, see index option (Transact-SQL).

DATA_COMPRESSION

Specifies the data compression option for the specified table, partition number, or range of
partitions. The options are as follows:

NONE

Table or specified partitions are not compressed.

ROW

Table or specified partitions are compressed by using row compression.
PAGE
Table or specified partitions are compressed by using page compression.

To rebuild multiple partitions at the same time, see index option (Transact-SQL). If the
table does not have a clustered index, changing the data compression rebuilds the heap and

the nonclustered indexes. For more information about compression, see Data

Compression.
column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

Is the name of the column set. A column set is an untyped XML representation that combines
all of the sparse columns of a table into a structured output. A column set cannot be added
to a table that contains sparse columns. For more information about column sets, see M
Sparse Column Sets.

{ ENABLE | DISABLE } FILETABLE_NAMESPACE

Enables or disables the system-defined constraints on a FileTable. Can only be used with a
FileTable.

SET (FILETABLE_DIRECTORY = directory_name)

Specifies the Windows-compatible FileTable directory name. This name should be unique

among all the FileTable directory names in the database. Uniqueness comparison is case-

258

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�

insensitive, regardless of SQL collation settings. Can only be used with a FileTable.

Remarks

To add new rows of data, use INSERT. To remove rows of data, use DELETE or TRUNCATE TABLE.
To change the values in existing rows, use UPDATE.

If there are any execution plans in the procedure cache that reference the table, ALTER TABLE
marks them to be recompiled on their next execution.

Changing the Size of a Column

You can change the length, precision, or scale of a column by specifying a new size for the
column data type in the ALTER COLUMN clause. If data exists in the column, the new size cannot
be smaller than the maximum size of the data. Also, the column cannot be defined in an index,
unless the column is a varchar, nvarchar, or varbinary data type and the index is not the result
of a PRIMARY KEY constraint. See example P.

Locks and ALTER TABLE

The changes specified in ALTER TABLE are implemented immediately. If the changes require
modifications of the rows in the table, ALTER TABLE updates the rows. ALTER TABLE acquires a
schema modify (SCH-M) lock on the table to make sure that no other connections reference
even the metadata for the table during the change, except online index operations that require a
very short SCH-M lock at the end. In an ALTER TABLE...SWITCH operation, the lock is acquired
on both the source and target tables. The modifications made to the table are logged and fully
recoverable. Changes that affect all the rows in very large tables, such as dropping a column or,
on some editions of SQL Server, adding a NOT NULL column with a default value, can take a
long time to complete and generate many log records. These ALTER TABLE statements should
be executed with the same care as any INSERT, UPDATE, or DELETE statement that affects many
rows.

Adding NOT NULL Columns as an Online Operation

In SQL Server 2012 Enterprise Edition, adding a NOT NULL column with a default value is an
online operation when the default value is a runtime constant. This means that the operation is
completed almost instantaneously regardless of the number of rows in the table. This is because
the existing rows in the table are not updated during the operation; instead, the default value is
stored only in the metadata of the table and the value is looked up as needed in queries that
access these rows. This behavior is automatic; no additional syntax is required to implement the
online operation beyond the ADD COLUMN syntax. A runtime constant is an expression that
produces the same value at runtime for each row in the table regardless of its determinism. For
example, the constant expression "My temporary data", or the system function
GETUTCDATETIME() are runtime constants. In contrast, the functions NEWID() or
NEWSEQUENTIALID() are not runtime constants because a unique value is produced for each
row in the table. Adding a NOT NULL column with a default value that is not a runtime constant
is always performed offline and an exclusive (SCH-M) lock is acquired for the duration of the
operation.

259

http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�

While the existing rows reference the value stored in metadata, the default value is stored on
the row for any new rows that are inserted and do not specify another value for the column. The
default value stored in metadata is moved to an existing row when the row is updated (even if
the actual column is not specified in the UPDATE statement), or if the table or clustered index is
rebuilt.

Columns of type varchar(max), nvarchar(max), varbinary(max), xml, text, ntext, image,
hierarchyid, geometry, geography, or CLR UDTS, cannot be added in an online operation. A
column cannot be added online if doing so causes the maximum possible row size to exceed the
8,060 byte limit. The column is added as an offline operation in this case.

Parallel Plan Execution

In Microsoft SQL Server 2012 Enterprise, the number of processors employed to run a single
ALTER TABLE ADD (index based) CONSTRAINT or DROP (clustered index) CONSTRAINT
statement is determined by the max degree of parallelism configuration option and the
current workload. If the Database Engine detects that the system is busy, the degree of
parallelism of the operation is automatically reduced before statement execution starts. You can
manually configure the number of processors that are used to run the statement by specifying
the MAXDOP option. For more information, see Configure the max degree of parallelism Server
Configuration Option.

Partitioned Tables

In addition to performing SWITCH operations that involve partitioned tables, ALTER TABLE can
be used to change the state of the columns, constraints, and triggers of a partitioned table just
like it is used for nonpartitioned tables. However, this statement cannot be used to change the
way the table itself is partitioned. To repartition a partitioned table, use ALTER PARTITION
SCHEME and ALTER PARTITION FUNCTION. Additionally, you cannot change the data type of a
column of a partitioned table.

Restrictions on Tables with Schema-Bound Views

The restrictions that apply to ALTER TABLE statements on tables with schema-bound views are
the same as the restrictions currently applied when modifying tables with a simple index. Adding
a column is allowed. However, removing or changing a column that participates in any schema-
bound view is not allowed. If the ALTER TABLE statement requires changing a column used in a
schema-bound view, ALTER TABLE fails and the Database Engine raises an error message. For
more information about schema binding and indexed views, see CREATE VIEW.

Adding or removing triggers on base tables is not affected by creating a schema-bound view
that references the tables.
Indexes and ALTER TABLE

Indexes created as part of a constraint are dropped when the constraint is dropped. Indexes that
were created with CREATE INDEX must be dropped with DROP INDEX. The ALTER INDEX
statement can be used to rebuild an index part of a constraint definition; the constraint does not
have to be dropped and added again with ALTER TABLE.

260

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�

All indexes and constraints based on a column must be removed before the column can be
removed.

When a constraint that created a clustered index is deleted, the data rows that were stored in
the leaf level of the clustered index are stored in a nonclustered table. You can drop the
clustered index and move the resulting table to another filegroup or partition scheme in a single
transaction by specifying the MOVE TO option. The MOVE TO option has the following
restrictions:

e MOVE TO is not valid for indexed views or nonclustered indexes.
e The partition scheme or filegroup must already exist.

e If MOVE TO is not specified, the table will be located in the same partition scheme or
filegroup as was defined for the clustered index.

When you drop a clustered index, you can specify ONLINE = ON option so the DROP INDEX

transaction does not block queries and modifications to the underlying data and associated

nonclustered indexes.

ONLINE = ON has the following restrictions:

e ONLINE = ON is not valid for clustered indexes that are also disabled. Disabled indexes must
be dropped by using ONLINE = OFF.

e Only one index at a time can be dropped.

e ONLINE = ON is not valid for indexed views, nonclustered indexes or indexes on local temp
tables.

Temporary disk space equal to the size of the existing clustered index is required to drop a
clustered index. This additional space is released as soon as the operation is completed.

The options listed under <drop_clustered_constraint_option> apply to clustered indexes
on tables and cannot be applied to clustered indexes on views or nonclustered indexes.

Replicating Schema Changes

By default, when you run ALTER TABLE on a published table at a SQL Server Publisher, that
change is propagated to all SQL Server Subscribers. This functionality has some restrictions and
can be disabled. For more information, see Making Schema Changes on Publication Databases.

Data Compression

System tables cannot be enabled for compression. . If the table is a heap, the rebuild operation
for ONLINE mode will be single threaded. Use OFFLINE mode for a multi-threaded heap rebuild
operation. For a more information about data compression, see Creating Compressed Tables
and Indexes.

To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp estimate data compression savings stored procedure.

The following restrictions apply to partitioned tables:

261

http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

¢ You cannot change the compression setting of a single partition if the table has nonaligned
indexes.

e The ALTER TABLE <table> REBUILD PARTITION ... syntax rebuilds the specified partition.
e The ALTER TABLE <table> REBUILD WITH ... syntax rebuilds all partitions.

Compatibility Support

The ALTER TABLE statement allows only two-part (schema.object) table names. In SQL Server
2012, specifying a table name using the following formats fails at compile time with error 117.
e server.database.schema.table

e .database.schema.table

e .schema.table

In earlier versions specifying the format server.database.schema.table returned error 4902.
Specifying the format .database.schema.table or the format ..schema.table succeeded.

To resolve the problem, remove the use of a 4-part prefix.

Permissions
Requires ALTER permission on the table.

ALTER TABLE permissions apply to both tables involved in an ALTER TABLE SWITCH statement.
Any data that is switched inherits the security of the target table.

If any columns in the ALTER TABLE statement are defined to be of a common language runtime
(CLR) user-defined type or alias data type, REFERENCES permission on the type is required.
Examples

A. Adding a new column

The following example adds a column that allows null values and has no values provided
through a DEFAULT definition. In the new column, each row will have NULL.

CREATE TABLE dbo.doc exa (column a INT) ;

GO

ALTER TABLE dbo.doc exa ADD column b VARCHAR(20) NULL ;
GO

EXEC sp help doc exa ;

GO

DROP TABLE dbo.doc exa ;

GO

B. Dropping a column

The following example modifies a table to remove a column.

CREATE TABLE dbo.doc exb (column a INT, column b VARCHAR(20) NULL) ;
GO

262

ALTER TABLE dbo.doc_exb DROP COLUMN column b ;
GO

EXEC sp help doc _exb ;

GO

DROP TABLE dbo.doc exb ;

GO

C. Changing the data type of a column

The following example changes a column of a table from INT to DECIMAL.
CREATE TABLE dbo.doc exy (column a INT) ;

GO

INSERT INTO dbo.doc exy (column a) VALUES (10) ;

GO

ALTER TABLE dbo.doc exy ALTER COLUMN column a DECIMAL (5, 2) ;
GO

DROP TABLE dbo.doc exy ;

GO

D. Adding a column with a constraint

The following example adds a new column with a UNIQUE constraint.

CREATE TABLE dbo.doc exc (column a INT) ;

GO

ALTER TABLE dbo.doc exc ADD column b VARCHAR(20) NULL
CONSTRAINT exb unique UNIQUE ;

GO

EXEC sp help doc _exc ;

GO

DROP TABLE dbo.doc_exc ;

GO

E. Adding an unverified CHECK constraint to an existing column

The following example adds a constraint to an existing column in the table. The column has a
value that violates the constraint. Therefore, WITH NOCHECK is used to prevent the constraint
from being validated against existing rows, and to allow for the constraint to be added.

CREATE TABLE dbo.doc exd (column a INT) ;
GO

INSERT INTO dbo.doc exd VALUES (-1) ;

GO

263

ALTER TABLE dbo.doc _exd WITH NOCHECK

ADD CONSTRAINT exd check CHECK (column a > 1) ;
GO

EXEC sp help doc exd ;

GO

DROP TABLE dbo.doc exd ;

GO

F. Adding a DEFAULT constraint to an existing column

The following example creates a table with two columns and inserts a value into the first column,
and the other column remains NULL. A DEFAULT constraint is then added to the second column.
To verify that the default is applied, another value is inserted into the first column, and the table
is queried.

CREATE TABLE dbo.doc exz (column a INT, column b INT) ;
GO

INSERT INTO dbo.doc exz (column a)VALUES (7) ;
GO

ALTER TABLE dbo.doc exz

ADD CONSTRAINT col b def

DEFAULT 50 FOR column b ;

GO

INSERT INTO dbo.doc exz (column a) VALUES (10) ;
GO

SELECT * FROM dbo.doc exz ;

GO

DROP TABLE dbo.doc exz ;

GO

G. Adding several columns with constraints

The following example adds several columns with constraints defined with the new column. The
first new column has an IDENTITY property. Each row in the table has new incremental values in
the identity column.

CREATE TABLE dbo.doc exe (column a INT CONSTRAINT column a un UNIQUE) ;
GO
ALTER TABLE dbo.doc exe ADD

-- Add a PRIMARY KEY identity column.
column b INT IDENTITY

264

CONSTRAINT column b pk PRIMARY KEY,

-- Add a column that references another column in the same table.
column c INT NULL

CONSTRAINT column c fk

REFERENCES doc_exe (column_a),

-- Add a column with a constraint to enforce that

-- nonnull data is in a valid telephone number format.
column d VARCHAR (16) NULL

CONSTRAINT column d chk

CHECK

(column d LIKE '[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]" OR
column d LIKE

"([0-9]110-9]1[0-9]) [0-9]1[0-9]1[0-9]-[0-9]1[0-9]1[0-9][0-9]1"),

-- Add a nonnull column with a default.
column e DECIMAL (3, 3)

CONSTRAINT column e default

DEFAULT .081 ;

GO

EXEC sp_help doc_exe ;

GO

DROP TABLE dbo.doc _exe ;

GO

H. Adding a nullable column with default values

The following example adds a nullable column with a DEFaULT definition, and uses wITH
VALUES to provide values for each existing row in the table. If WITH VALUES is not used, each
row has the value NULL in the new column.

USE AdventureWorks2012 ;

GO

CREATE TABLE dbo.doc exf (column a INT) ;
GO

INSERT INTO dbo.doc exf VALUES (1) ;

GO

265

ALTER TABLE dbo.doc exf

ADD AddDate smalldatetime NULL
CONSTRAINT AddDateDflt

DEFAULT GETDATE () WITH VALUES ;
GO

DROP TABLE dbo.doc exf ;

GO

I. Disabling and re-enabling a constraint

The following example disables a constraint that limits the salaries accepted in the data.
NOCHECK CONSTRAINT is used with ALTER TABLE to disable the constraint and allow for an
insert that would typically violate the constraint. CHECK CONSTRAINT re-enables the constraint.

CREATE TABLE dbo.cnst example
(id INT NOT NULL,
name VARCHAR(10) NOT NULL,
salary MONEY NOT NULL
CONSTRAINT salary cap CHECK (salary < 100000)
) i

-- Valid inserts
INSERT INTO dbo.cnst example VALUES (1, 'Joe Brown',65000);
INSERT INTO dbo.cnst example VALUES (2, 'Mary Smith',75000);

-— This insert violates the constraint.

INSERT INTO dbo.cnst example VALUES (3, 'Pat Jones',105000);

-- Disable the constraint and try again.
ALTER TABLE dbo.cnst example NOCHECK CONSTRAINT salary cap;
INSERT INTO dbo.cnst example VALUES (3,'Pat Jones',105000);

-- Re-enable the constraint and try another insert; this will fail.
ALTER TABLE dbo.cnst example CHECK CONSTRAINT salary cap;
INSERT INTO dbo.cnst example VALUES (4, 'Eric James',110000) ;

J. Dropping a constraint
The following example removes a UNIQUE constraint from a table.
CREATE TABLE dbo.doc exc (column a INT

266

CONSTRAINT my constraint UNIQUE) ;

GO

ALTER TABLE dbo.doc_exc DROP CONSTRAINT my constraint ;
GO

DROP TABLE dbo.doc exc ;

GO

K. Switching partitions between tables

The following example creates a partitioned table, assuming that partition scheme myRangePs1
is already created in the database. Next, a non-partitioned table is created with the same
structure as the partitioned table and on the same filegroup as parTITION 2 Of table
PartitionTable. The data of PARTITION 2 of table PartitionTable is then switched into
table NonPartitionTable.

CREATE TABLE PartitionTable (coll int, col2 char(10))

ON myRangePS1 (coll) ;

GO

CREATE TABLE NonPartitionTable (coll int, col2 char(10))

ON test2fg ;

GO

ALTER TABLE PartitionTable SWITCH PARTITION 2 TO NonPartitionTable ;

GO

L. Disabling and re-enabling a trigger

The following example uses the DISABLE TRIGGER option of ALTER TABLE to disable the trigger
and allow for an insert that would typically violate the trigger. ENABLE TRIGGER is then used to
re-enable the trigger.

CREATE TABLE dbo.trig example

(id INT,

name VARCHAR (12),

salary MONEY) ;

GO

-- Create the trigger.

CREATE TRIGGER dbo.trigl ON dbo.trig example FOR INSERT
AS

IF (SELECT COUNT (*) FROM INSERTED
WHERE salary > 100000) > O

BEGIN

267

print 'TRIGl Error: you attempted to insert a salary > $100,000'
ROLLBACK TRANSACTION
END ;
GO
-- Try an insert that violates the trigger.
INSERT INTO dbo.trig example VALUES (1, 'Pat Smith',100001) ;
GO
-- Disable the trigger.
ALTER TABLE dbo.trig example DISABLE TRIGGER trigl ;
GO
-- Try an insert that would typically violate the trigger.
INSERT INTO dbo.trig example VALUES (2, 'Chuck Jones',100001) ;
GO
-- Re-enable the trigger.
ALTER TABLE dbo.trig example ENABLE TRIGGER trigl ;
GO
-- Try an insert that violates the trigger.
INSERT INTO dbo.trig example VALUES (3, 'Mary Booth',100001) ;
GO

M. Creating a PRIMARY KEY constraint with index options

The following example creates the PRIMARY KEY constraint
PK TransactionHistoryArchive TransactionID and sets the options FILLFACTOR, ONLINE,
and paD INDEX. The resulting clustered index will have the same name as the constraint.

USE AdventureWorks2012;
GO
ALTER TABLE Production.TransactionHistoryArchive WITH NOCHECK

ADD CONSTRAINT PK TransactionHistoryArchive TransactionID PRIMARY KEY
CLUSTERED (TransactionID)

WITH (FILLFACTOR = 75, ONLINE = ON, PAD INDEX = ON);

GO

N. Dropping a PRIMARY KEY constraint in the ONLINE mode

The following example deletes a PRIMARY KEY constraint with the ONLINE option set to on.
USE AdventureWorks2012;

GO
ALTER TABLE Production.TransactionHistoryArchive

268

DROP CONSTRAINT PK TransactionHistoryArchive TransactionID
WITH (ONLINE = ON) ;
GO

O. Adding and dropping a FOREIGN KEY constraint

The following example creates the table ContactBackup, and then alters the table, first by
adding a FOREIGN KEY constraint that references the table person.Person, then by dropping
the FOREIGN KEY constraint.

USE AdventureWorks2012 ;

GO

CREATE TABLE Person.ContactBackup

(ContactID int) ;

GO

ALTER TABLE Person.ContactBackup

ADD CONSTRAINT FK ContactBacup Contact FOREIGN KEY (ContactID)
REFERENCES Person.Person (BusinessEntityID) ;

ALTER TABLE Person.ContactBackup

DROP CONSTRAINT FK ContactBacup Contact ;

GO

DROP TABLE Person.ContactBackup ;

P. Changing the size of a column

The following example increases the size of a varchar column and the precision and scale of a
decimal column. Because the columns contain data, the column size can only be increased. Also
notice that col a is defined in a unique index. The size of col a can still be increased because
the data type is a varchar and the index is not the result of a PRIMARY KEY constraint.

IF OBJECT ID ('dbo.doc exy', 'U') IS NOT NULL
DROP TABLE dbo.doc exy;
GO
-- Create a two-column table with a unique index on the varchar column.

CREATE TABLE dbo.doc_exy (col a varchar(5) UNIQUE NOT NULL, col b decimal
(4,2));

GO

INSERT INTO dbo.doc exy VALUES ('Test', 99.99);
GO

-- Verify the current column size.

SELECT name, TYPE NAME (system type id), max length, precision, scale

269

FROM sys.columns WHERE object id = OBJECT ID(N'dbo.doc exy');

GO

-- Increase the size of the varchar column.

ALTER TABLE dbo.doc exy ALTER COLUMN col a varchar (25);

GO

-- Increase the scale and precision of the decimal column.

ALTER TABLE dbo.doc_exy ALTER COLUMN col b decimal (10,4);

GO

-- Insert a new row.

INSERT INTO dbo.doc_exy VALUES ('MyNewColumnSize', 99999.9999) ;
GO

-- Verify the current column size.

SELECT name, TYPE NAME (system type id), max length, precision, scale

FROM sys.columns WHERE object id = OBJECT ID(N'dbo.doc exy');

Q. Allowing lock escalation on partitioned tables

The following example enables lock escalation to the partition level on a partitioned table. If the
table is not partitioned, lock escalation is to the TABLE level.

ALTER TABLE Tl SET (LOCK ESCALATION = AUTO)
GO

R. Configuring change tracking on a table

The following example enables change tracking on the Person.Person table in the
AdventureWorks2012 database.

USE AdventureWorks2012;
ALTER TABLE Person.Person
ENABLE CHANGE_TRACKING;

The following example enables change tracking and enables the tracking of the columns that
are updated during a change.

USE AdventureWorks2012;

ALTER TABLE Person.Person

ENABLE CHANGE TRACKING

WITH (TRACK COLUMNS UPDATED = ON)

The following example disables change tracking on the person.Person table in the
AdventureWorks2012 database:

USE AdventureWorks2012;
ALTER TABLE Person.Person

270

DISABLE CHANGE TRACKING;

S. Modifying a table to change the compression

The following example changes the compression of a nonpartitioned table. The heap or
clustered index will be rebuilt. If the table is a heap, all nonclustered indexes will be rebuilt.

ALTER TABLE T1
REBUILD WITH (DATA COMPRESSION = PAGE) ;

The following example changes the compression of a partitioned table. The REBUTLD
PARTITION = 1 syntax causes only partition number 1 to be rebuilt.

ALTER TABLE PartitionTablel
REBUILD PARTITION = 1 WITH (DATA COMPRESSION = NONE) ;
GO

The same operation using the following alternate syntax causes all partitions in the table to be
rebuilt.

ALTER TABLE PartitionTablel

REBUILD PARTITION = ALL

WITH (DATA COMPRESSION = PAGE ON PARTITIONS (1)) ;

For additional data compression examples, see Creating Compressed Tables and Indexes.

T. Adding a sparse column

The following examples show adding and modifying sparse columns in table T1. The code to
create table T1 is as follows.

CREATE TABLE T1

(C1 int PRIMARY KEY,

C2 wvarchar (50) SPARSE NULL,

C3 int SPARSE NULL,

C4 int) ;

GO

To add an additional sparse column c5, execute the following statement.
ALTER TABLE T1

ADD C5 char(100) SPARSE NULL ;

GO

To convert the c4 non-sparse column to a sparse column, execute the following statement.
ALTER TABLE T1

ALTER COLUMN C4 ADD SPARSE ;

GO

271

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

To convert the c4 sparse column to a nonsparse column, execute the following statement.
ALTER TABLE T1

ALTER COLUMN C4 DROP SPARSE;

GO

U. Adding a column set

The following examples show adding a column to table T2. A column set cannot be added to a
table that already contains sparse columns. The code to create table T2 is as follows.

CREATE TABLE T2

(C1 int PRIMARY KEY,
C2 wvarchar (50) NULL,
C3 int NULL,

C4 int) ;

GO

The following three statements add a column set named cs, and then modify columns c2 and
C3 to SPARSE.

ALTER TABLE T2
ADD CS XML COLUMN SET FOR ALL SPARSE COLUMNS ;
GO

ALTER TABLE T2
ALTER COLUMN C2 ADD SPARSE ;
GO

ALTER TABLE T2
ALTER COLUMN C3 ADD SPARSE ;
GO

V. Changing column collation

The following example shows how to change the collation of a column. First we create table T3
with default user collations:

CREATE TABLE T3

(C1 int PRIMARY KEY,
C2 wvarchar (50) NULL,
C3 int NULL,

C4 int) ;

272

GO

Next, column c2 collation is changed to Latinl_General_BIN. Note that the data type is required,
even though it is not changed.

ALTER TABLE T3
ALTER COLUMN C2 varchar (50) COLLATE Latinl_General_BIN;
GO

See Also

sys.tables (Transact-SQL)

Sp rename

CREATE TABLE

DROP TABLE

sp help

ALTER PARTITION SCHEME
ALTER PARTITION FUNCTION
EVENTDATA

column_definition
Specifies the properties of a column that are added to a table by using ALTER TABLE.
= Transact-SQL Syntax Conventions

Syntax

column_name [type_schema_name. | type name
[
({ precision [, scale]| max |
[{ CONTENT | DOCUMENT }] xml_schema _collection })
]
[FILESTREAM]
[
[CONSTRAINT constraint name] DEFAULT constant_expression
[WITH VALUES]
| IDENTITY [(seed , increment)] [NOT FOR REPLICATION]
]
[ROWGUIDCOL]
[COLLATE < collation_name >]

273

http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[<column constraint> [..n]]

Arguments

column_name
Is the name of the column to be altered, added, or dropped. column_name can consist of 1
through 128 characters. For new columns, created with a timestamp data type, column_name
can be omitted. If no column_name is specified for a timestamp data type column, the name
timestamp is used.

[type_schema_name.] type_name
Is the data type for the column that is added and the schema to which it belongs.
type_name can be:

e A Microsoft SQL Server system data type.

e An alias data type based on a SQL Server system data type. Alias data types must be
created by using CREATE TYPE before they can be used in a table definition.

e A Microsoft .NET Framework user-defined type and the schema to which it belongs. A
.NET Framework user-defined type must be created by using CREATE TYPE before it can
be used in a table definition.

If type_schema_name is not specified, the Microsoft Database Engine references type_name
in the following order:

e The SQL Server system data type.
e The default schema of the current user in the current database.

e The dbo schema in the current database.

precision

Is the precision for the specified data type. For more information about valid precision values,
see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see

Controlling Constraints, Identities, and Triggers with NOT FOR REPLICATION.

max
Applies only to the varchar, nvarchar, and varbinary data types. These are used for storing
2731 bytes of character and binary data, and 230 bytes of Unicode data.

CONTENT

Specifies that each instance of the xml data type in column_name can comprise multiple top-
level elements. CONTENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified. If this is not specified, CONTENT is the default
behavior.

DOCUMENT

Specifies that each instance of the xml data type in column_name can comprise only one

274

http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�

top-level element. DOCUMENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified.

xml_schema_collection

Applies only to the xml data type for associating an XML schema collection with the type.
Before typing an xml column to a schema, the schema must first be created in the database

by using CREATE XML SCHEMA COLLECTION.

FILESTREAM

Optionally specifies the FILESTREAM storage attribute for column that has a type_name of
varbinary(max).

When FILESTREAM is specified for a column, the table must also have a column of the
uniqueidentifier data type that has the ROWGUIDCOL attribute. This column must not allow
null values and must have either a UNIQUE or PRIMARY KEY single-column constraint. The
GUID value for the column must be supplied either by an application when data is being
inserted, or by a DEFAULT constraint that uses the NEWID () function.

The ROWGUIDCOL column cannot be dropped and the related constraints cannot be
changed while there is a FILESTREAM column defined for the table. The ROWGUIDCOL
column can be dropped only after the last FILESTREAM column is dropped.

When the FILESTREAM storage attribute is specified for a column, all values for that column
are stored in a FILESTREAM data container on the file system.

For an example that shows how to use column definition, see FILESTREAM (SQL Server).

[CONSTRAINT constraint_name]

Specifies the start of a DEFAULT definition. To maintain compatibility with earlier versions of
SQL Server, a constraint name can be assigned to a DEFAULT. constraint_name must follow
the rules for identifiers, except that the name cannot start with a number sign (#). If
constraint_name is not specified, a system-generated name is assigned to the DEFAULT
definition.

DEFAULT

Is a keyword that specifies the default value for the column. DEFAULT definitions can be used
to provide values for a new column in the existing rows of data. DEFAULT definitions cannot
be applied to timestamp columns, or columns with an IDENTITY property. If a default value
is specified for a user-defined type column, the type should support an implicit conversion
from constant_expression to the user-defined type.

constant_expression

Is a literal value, a NULL, or a system function used as the default column value. If used in
conjunction with a column defined to be of a .NET Framework user-defined type, the
implementation of the type must support an implicit conversion from the
constant_expression to the user-defined type.

275

http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in a new column
added to existing rows. If the added column allows null values and WITH VALUES is specified,
the default value is stored in the new column, added to existing rows. If WITH VALUES is not
specified for columns that allow nulls, the value NULL is stored in the new column in existing
rows. If the new column does not allow nulls, the default value is stored in new rows
regardless of whether WITH VALUES is specified.

IDENTITY

Specifies that the new column is an identity column. The SQL Server Database Engine
provides a unique, incremental value for the column. When you add identifier columns to
existing tables, the identity numbers are added to the existing rows of the table with the seed
and increment values. The order in which the rows are updated is not guaranteed. Identity
numbers are also generated for any new rows that are added.

Identity columns are commonly used in conjunction with PRIMARY KEY constraints to serve
as the unique row identifier for the table. The IDENTITY property can be assigned to a
tinyint, smallint, int, bigint, decimal(p,0), or numeric(p,0) column. Only one identity
column can be created per table. The DEFAULT keyword and bound defaults cannot be used
with an identity column. Either both the seed and increment must be specified, or neither. If
neither are specified, the default is (1,1). You cannot modify an existing table column to add
the IDENTITY property.

Adding an identity column to a published table is not supported because it can result in
nonconvergence when the column is replicated to the Subscriber. The values in the identity column at
the Publisher depend on the order in which the rows for the affected table are physically stored. The
rows might be stored differently at the Subscriber; therefore, the value for the identity column can be
different for the same rows..

To disable the IDENTITY property of a column by allowing values to be explicitly inserted, use
SET IDENTITY INSERT.

seed

Is the value used for the first row loaded into the table.

increment
Is the incremental value added to the identity value of the previous row that is loaded.

NOT FOR REPLICATION

Can be specified for the IDENTITY property. If this clause is specified for the IDENTITY
property, values are not incremented in identity columns when replication agents perform
insert operations.

ROWGUIDCOL
Specifies that the column is a row globally unique identifier column. ROWGUIDCOL can only

276

http://msdn.microsoft.com/en-us/library/a5dd49f2-45c7-44a8-b182-e0a5e5c373ee(SQL.110)�

be assigned to a uniqueidentifier column, and only one uniqueidentifier column per table
can be designated as the ROWGUIDCOL column. ROWGUIDCOL cannot be assigned to
columns of user-defined data types.

ROWGUIDCOL does not enforce uniqueness of the values stored in the column. Also,
ROWGUIDCOL does not automatically generate values for new rows that are inserted into the
table. To generate unique values for each column, either use the NEWID function on INSERT
statements or specify the NEWID function as the default for the column. For more

information, see NEWID (Transact-SQL)and INSERT (Transact-SOL).

COLLATE < collation_name >
Specifies the collation of the column. If not specified, the column is assigned the default
collation of the database. Collation name can be either a Windows collation name or an SQL
collation name. For a list and more information, see Windows Collation Name and SOL
Collation Name.

The COLLATE clause can be used to specify the collations only of columns of the char,
varchar, nchar, and nvarchar data types.

For more information about the COLLATE clause, see COLLATE.

Remarks

If a column is added having a uniqueidentifier data type, it can be defined with a default that
uses the NEWID() function to supply the unique identifier values in the new column for each
existing row in the table.

The Database Engine does not enforce an order for specifying DEFAULT, IDENTITY,
ROWGUIDCOL, or column constraints in a column definition.

ALTER TABLE statement will fail if adding the column will cause the data row size to exceed 8060
bytes.

Examples

For examples, see ALTER TABLE (Transact-SQL).
See Also

ALTER TABLE

column_constraint

Specifies the properties of a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint that is
part of a new column definition added to a table by using ALTER TABLE.

=k Transact-SQL Syntax Conventions
Syntax

[CONSTRAINT constraint_name]
{
[NULL | NOT NULL]
277

http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f(SQL.110)�
http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

}

{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[WITH (index_option|[,..n])]
[ON {partition_scheme name (partition_column_name)
| filegroup | "default™ }]
| [FOREIGN KEY]
REFERENCES [schema_name . | referenced_table name
[(ref_column)]
[ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[NOT FOR REPLICATION]
| CHECK [NOT FOR REPLICATION] (logical_expression)

Arguments
CONSTRAINT

Specifies the start of the definition for a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK
constraint.

constraint_name

Is the name of the constraint. Constraint names must follow the rules for identifiers, except
that the name cannot start with a number sign (#). If constraint_name is not supplied, a
system-generated name is assigned to the constraint.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not allow null values
can be added only if they have a default specified. If the new column allows null values and
no default is specified, the new column contains NULL for each row in the table. If the new
column allows null values and a default definition is added with the new column, the WITH
VALUES option can be used to store the default value in the new column for each existing
row in the table.

If the new column does not allow null values, a DEFAULT definition must be added with the
new column. The new column automatically loads with the default value in the new columns
in each existing row.

When the addition of a column requires physical changes to the data rows of a table, such as
adding DEFAULT values to each row, locks are held on the table while ALTER TABLE runs. This
affects the ability to change the content of the table while the lock is in place. In contrast,
adding a column that allows null values and does not specify a default value is a metadata
operation only, and involves no locks.

278

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

When you use CREATE TABLE or ALTER TABLE, database and session settings influence and
possibly override the nullability of the data type that is used in a column definition. We
recommend that you always explicitly define noncomputed columns as NULL or NOT NULL
or, if you use a user-defined data type, that you allow the column to use the default

nullability of the data type. For more information, see Controlling Constraints,
Identities, and Triggers with NOT FOR REPLICATION.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If
a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

Columns that are of the ntext, text, varchar(max), nvarchar(max), varbinary(max), xml, or
image data types cannot be specified as columns for an index.

WITH FILLFACTOR = fillfactor

Specifies how full the Database Engine should make each index page used to store the index
data. User-specified fill factor values can be from 1 through 100. If a value is not specified,
the default is 0.

4 Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or
UNIQUE constraints is maintained for backward compatibility, but will not be documented in this

manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

ON { partition_scheme_name (partition_column_name) | filegroup | "default” }

Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default™ is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is
added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

279

In this context, default, is not a keyword. It is an identifier for the default filegroup and must
be delimited, as in ON "default” or ON [default]. If "default” is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
For more information, see SET QUOTED IDENTIFIER (Transact-SOL).

FOREIGN KEY REFERENCES
Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY
constraints require that each value in the column exist in the specified column in the
referenced table.

schema_name
Is the name of the schema to which the table referenced by the FOREIGN KEY constraint
belongs.

referenced_table name

Is the table referenced by the FOREIGN KEY constraint.

ref_column

Is a column in parentheses referenced by the new FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table that is altered, if those rows have a
referential relationship and the referenced row is deleted from the parent table. The default is
NO ACTION.

NO ACTION
The SQL Server Database Engine raises an error and the delete action on the row in the
parent table is rolled back.

CASCADE
Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is deleted. For this constraint to execute, the foreign key columns must be
nullable.

SET DEFAULT

All the values that comprise the foreign key are set to their default values when the
corresponding row in the parent table is deleted. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

280

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

The ON DELETE CASCADE cannot be defined if an INSTEAD OF trigger ON DELETE already
exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If a DELETE statement is executed on a row in the Vendor table, and an ON DELETE CASCADE
action is specified for ProductVendor.VendorID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table will be deleted, in addition to the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table altered when those rows have a referential
relationship and the referenced row is updated in the parent table. The default is NO
ACTION.

NO ACTION
The Database Engine raises an error, and the update action on the row in the parent table
is rolled back.

CASCADE
Corresponding rows are updated in the referencing table when that row is updated in the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is updated. For this constraint to execute, the foreign key columns must
be nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values when the
corresponding row in the parent table is updated. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE CASCADE, SET NULL, or SET DEFAULT cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the

281

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

Vendor.VendorID primary key.

If an UPDATE statement is executed on a row in the Vendor table and an ON UPDATE
CASCADE action is specified for ProductVendor.VendorID, the Database Engine checks for
one or more dependent rows in the ProductVendor table. If any exist, the dependent row in
the ProductVendor table will be updated, in addition to the row referenced in the Vendor
table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
update action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

NOT FOR REPLICATION

Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is
specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns.

logical_expression
Is a logical expression used in a CHECK constraint and returns TRUE or FALSE.
logical_expression used with CHECK constraints cannot reference another table but can
reference other columns in the same table for the same row. The expression cannot reference
an alias data type.

Remarks

When FOREIGN KEY or CHECK constraints are added, all existing data is verified for constraint
violations unless the WITH NOCHECK option is specified. If any violations occur, ALTER TABLE
fails and an error is returned. When a new PRIMARY KEY or UNIQUE constraint is added to an
existing column, the data in the column or columns must be unique. If duplicate values are
found, ALTER TABLE fails. The WITH NOCHECK option has no effect when PRIMARY KEY or
UNIQUE constraints are added.

Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index. Foreign key constraints do not automatically
generate an index. However, foreign key columns are frequently used in join criteria in queries
by matching the column or columns in the foreign key constraint of one table with the primary
or unique key column or columns in the other table. An index on the foreign key columns
enables the Database Engine to quickly find related data in the foreign key table.

Examples

For examples, see ALTER TABLE (Transact-SQL).

See Also

ALTER TABLE

282

column definition

computed_column_definition

Specifies the properties of a computed column that is added to a table by using ALTER TABLE.
.= Transact-SQL Syntax Conventions

Syntax

column name AS computed column_expression
[PERSISTED [NOT NULL 1]
[
[CONSTRAINT constraint name]
{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[WITH (<index_option> [, .n])]
[ON { partition_scheme name (partition column_name) | filegroup
| "default" }]
| [FOREIGN KEY]
REFERENCES ref table [(ref_column)]
[ON DELETE { NO ACTION | CASCADE }]
[ON UPDATE { NO ACTION }]
[NOT FOR REPLICATION]
| CHECK [NOT FOR REPLICATION] (logical expression)
]
Arguments
column_name

Is the name of the column to be altered, added, or dropped. column_name can be 1 through
128 characters. For new columns, column_name can be omitted for columns created with a
timestamp data type. If no column_name is specified for a timestamp data type column, the
name timestamp is used.

computed_column_expression

Is an expression that defines the value of a computed column. A computed column is a
virtual column that is not physically stored in the table but is computed from an expression
that uses other columns in the same table. For example, a computed column could have the
definition: cost AS price * qty. The expression can be a noncomputed column name, constant,
function, variable, and any combination of these connected by one or more operators. The

283

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

expression cannot be a subquery or include an alias data type.

Computed columns can be used in select lists, WHERE clauses, ORDER BY clauses, or any
other locations where regular expressions can be used, but with the following exceptions:

e A computed column cannot be used as a DEFAULT or FOREIGN KEY constraint definition
or with a NOT NULL constraint definition. However, if the computed column value is
defined by a deterministic expression and the data type of the result is allowed in index

columns, a computed column can be used as a key column in an index or as part of any
PRIMARY KEY or UNIQUE constraint.

For example, if the table has integer columns a and b, the computed column a + b may
be indexed, but computed column a + DATEPART(dd, GETDATE()) cannot be indexed,
because the value might change in subsequent invocations.

e A computed column cannot be the target of an INSERT or UPDATE statement.

Because each row in a table can have different values for columns involved in a computed
column, the computed column may not have the same result for each row.

PERSISTED

Specifies that the Database Engine will physically store the computed values in the table, and
update the values when any other columns on which the computed column depends are
updated. Marking a computed column as PERSISTED allows an index to be created on a
computed column that is deterministic, but not precise. For more information, see
Controlling Constraints, Identities, and Triggers with NOT FOR REPLICATION.

Any computed columns used as partitioning columns of a partitioned table must be explicitly

marked PERSISTED. computed_column_expression must be deterministic when PERSISTED is
specified.

NULL | NOT NULL
Specifies whether null values are allowed in the column. NULL is not strictly a constraint but
can be specified like NOT NULL. NOT NULL can be specified for computed columns only if
PERSISTED is also specified.

CONSTRAINT
Specifies the start of the definition for a PRIMARY KEY or UNIQUE constraint.

constraint_name

Is the new constraint. Constraint names must follow the rules for identifiers, except that the
name cannot start with a number sign (#). If constraint_name is not supplied, a system-
generated name is assigned to the constraint.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

284

http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

UNIQUE

Is a constraint that provides entity integrity for a specific column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If

a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

WITH FILLFACTOR = fillfactor

Specifies how full the SQL Server Database Engine should make each index page used to
store the index data. User-specified fillfactor values can be from 1 through 100. If a value is
not specified, the default is 0.

4 Important

Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or
UNIQUE constraints is maintained for backward compatibility, but will not be documented in this

manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

FOREIGN KEY REFERENCES

Is a constraint that provides referential integrity for the data in the column or columns.
FOREIGN KEY constraints require that each value in the column exists in the corresponding
referenced column or columns in the referenced table. FOREIGN KEY constraints can
reference only columns that are PRIMARY KEY or UNIQUE constraints in the referenced table
or columns referenced in a UNIQUE INDEX on the referenced table. Foreign keys on
computed columns must also be marked PERSISTED.

ref_table

Is the name of the table referenced by the FOREIGN KEY constraint.
(ref_column)

Is a column from the table referenced by the FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE }

Specifies what action happens to rows in the table if those rows have a referential

relationship and the referenced row is deleted from the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error and the delete action on the row in the parent table is
rolled back.

285

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.BusinessEntityID foreign key references the
Vendor.BusinessEntityID primary key.

If a DELETE statement is executed on a row in the Vendor table, and an ON DELETE CASCADE
action is specified for ProductVendor.BusinessEntityID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table are deleted, in addition to the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE { NO ACTION }
Specifies what action happens to rows in the table created when those rows have a
referential relationship and the referenced row is updated in the parent table. When NO
ACTION is specified, the Database Engine raises an error and rolls back the update action on
the Vendor row if there is at least one row in the ProductVendor table that references it.

NOT FOR REPLICATION
Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is

specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints on computed columns must also be
marked PERSISTED.

logical_expression

Is a logical expression that returns TRUE or FALSE. The expression cannot contain a reference
to an alias data type.

ON { partition_scheme_name (partition_column_name) | filegroup| "default"}
Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default" is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is

286

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in ON "default" or ON [default]. If "default” is specified, the QUOTED_IDENTIFIER option
must be ON for the current session. This is the default setting. For more information, see SET

QUOTED IDENTIFIER (Transact-SQL).

Remarks

Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index.

See Also
ALTER TABLE

table constraint

Specifies the properties of a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK constraint, or a
DEFAULT definition added to a table by using ALTER TABLE.

=5 Transact-SQL Syntax Conventions
Syntax

[CONSTRAINT constraint_name]
{
{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
(column [ASC|DESC][,.n])
[WITH FILLFACTOR = fillfactor
[WITH (<index_option>[,..n])]
[ON {partition_scheme name (partition_column_name ...)
| £ilegroup | "default™ }]
| FOREIGN KEY
(column [,.n])
REFERENCES referenced_table name [(ref_column [,.n])]
[ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[NOT FOR REPLICATION]
| DEFAULT constant_expression FOR column [WITH VALUES]

287

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

| CHECK [NOT FOR REPLICATION] (logical_ expression)

}

Arguments

CONSTRAINT
Specifies the start of a definition for a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK
constraint, or a DEFAULT.

constraint_name
Is the name of the constraint. Constraint names must follow the rules for identifiers, except
that the name cannot start with a number sign (#). If constraint_name is not supplied, a
system-generated name is assigned to the constraint.

PRIMARY KEY
Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

UNIQUE
Is a constraint that provides entity integrity for a specified column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If
a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

Columns that are of the ntext, text, varchar(max), nvarchar(max), varbinary(max), xml, or
image data types cannot be specified as columns for an index.
column

Is a column or list of columns specified in parentheses that are used in a new constraint.

[ASC | DESC]

Specifies the order in which the column or columns participating in table constraints are
sorted. The default is ASC.

WITH FILLFACTOR = fillfactor

Specifies how full the Database Engine should make each index page used to store the index
data. User-specified fillfactor values can be from 1 through 100. If a value is not specified, the
default is 0.

4 Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or

288

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

UNIQUE constraints is maintained for backward compatibility, but will not be documented in this
manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

ON { partition_scheme_name (partition_column_name) | filegroup | "default” }

Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default” is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is
added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

In this context, default is not a keyword; it is an identifier for the default filegroup and must
be delimited, as in ON "default” or ON [default]. If "default” is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
FOREIGN KEY REFERENCES
Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY
constraints require that each value in the column exist in the specified column in the
referenced table.
referenced_table_name

Is the table referenced by the FOREIGN KEY constraint.

ref_column

Is a column or list of columns in parentheses referenced by the new FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table that is altered, if those rows have a
referential relationship and the referenced row is deleted from the parent table. The default is
NO ACTION.

NO ACTION

The SQL Server Database Engine raises an error and the delete action on the row in the
parent table is rolled back.

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is deleted. For this constraint to execute, the foreign key columns must be
nullable.

SET DEFAULT

289

All the values that comprise the foreign key are set to their default values when the
corresponding row in the parent table is deleted. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON DELETE CASCADE cannot be defined if an INSTEAD OF trigger ON DELETE already exists
on the table that is being altered.
For example, in the database, the ProductVendor table has a referential relationship

with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If a DELETE statement is executed on a row in the Vendor table and an ON DELETE CASCADE
action is specified for ProductVendor.VendorID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table will be deleted, in addition to the row referenced in the Vendor table.
Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the

delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table altered when those rows have a referential
relationship and the referenced row is updated in the parent table. The default is NO
ACTION.

NO ACTION
The Database Engine raises an error, and the update action on the row in the parent table
is rolled back.

CASCADE
Corresponding rows are updated in the referencing table when that row is updated in the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is updated. For this constraint to execute, the foreign key columns must
be nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values when the
corresponding row in the parent table is updated. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable, and there is no explicit
default value set, NULL becomes the implicit default value of the column.

290

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE CASCADE, SET NULL, or SET DEFAULT cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If an UPDATE statement is executed on a row in the Vendor table and an ON UPDATE
CASCADE action is specified for ProductVendor.VendorID, the Database Engine checks for
one or more dependent rows in the ProductVendor table. If any exist, the dependent row in
the ProductVendor table will be updated, as well as the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
update action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

NOT FOR REPLICATION

Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is
specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

DEFAULT

Specifies the default value for the column. DEFAULT definitions can be used to provide values
for a new column in the existing rows of data. DEFAULT definitions cannot be added to
columns that have a timestamp data type, an IDENTITY property, an existing DEFAULT
definition, or a bound default. If the column has an existing default, the default must be
dropped before the new default can be added. If a default value is specified for a user-
defined type column, the type should support an implicit conversion from
constant_expression to the user-defined type. To maintain compatibility with earlier versions
of SQL Server, a constraint name can be assigned to a DEFAULT.

constant_expression
Is a literal value, a NULL, or a system function that is used as the default column value. If
constant_expression is used in conjunction with a column defined to be of a Microsoft .NET
Framework user-defined type, the implementation of the type must support an implicit
conversion from the constant_expression to the user-defined type.

FOR column

Specifies the column associated with a table-level DEFAULT definition.

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in a new column that
is added to existing rows. WITH VALUES can be specified only when DEFAULT is specified in
an ADD column clause. If the added column allows null values and WITH VALUES is specified,

291

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

the default value is stored in the new column that is added to existing rows. If WITH VALUES
is not specified for columns that allow nulls, NULL is stored in the new column in existing

rows. If the new column does not allow nulls, the default value is stored in new rows
regardless of whether WITH VALUES is specified.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns.

logical_expression
Is a logical expression used in a CHECK constraint and returns TRUE or FALSE.
logical_expression used with CHECK constraints cannot reference another table but can
reference other columns in the same table for the same row. The expression cannot reference
an alias data type.

Remarks

When FOREIGN KEY or CHECK constraints are added, all existing data is verified for constraint
violations unless the WITH NOCHECK option is specified. If any violations occur, ALTER TABLE
fails and an error is returned. When a new PRIMARY KEY or UNIQUE constraint is added to an
existing column, the data in the column or columns must be unique. If duplicate values are
found, ALTER TABLE fails. The WITH NOCHECK option has no effect when PRIMARY KEY or
UNIQUE constraints are added.

Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index. Foreign key constraints do not automatically
generate an index. However, foreign key columns are frequently used in join criteria in queries
by matching the column or columns in the foreign key constraint of one table with the primary
or unique key column or columns in the other table. An index on the foreign key columns
enables the Database Engine to quickly find related data in the foreign key table.

Examples

For examples, see ALTER TABLE (Transact-SQL).

See Also

ALTER TABLE

index_option

Specifies a set of options that can be applied to an index that is part of a constraint definition
that is created by using ALTER TABLE.

.= Transact-SQL Syntax Conventions

Syntax

292

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

PAD_INDEX = { ON | OFF }

| FILLFACTOR = fillfactor

| IGNORE_DUP_KEY = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }

| ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

| SORT_IN_TEMPDB = { ON | OFF }

| ONLINE = { ON | OFF }

| MAXDOP = max_degree of parallelism

| DATA_COMPRESSION = { NONE |ROW | PAGE}
[ON PARTITIONS ({ <partition_number_expression> | <range> }
[,..n])]

<range> :=
<partition_number_expression> TO <partition_number_expression>

<single_partition_rebuild__option> ::=
{
SORT_IN_TEMPDB = { ON | OFF }
| MAXDOP = max_degree_of_parallelism
| DATA_COMPRESSION = {NONE | ROW | PAGE } }
}
Arguments
PAD_INDEX = { ON | OFF }
Specifies index padding. The default is OFF.
ON
The percentage of free space that is specified by FILLFACTOR is applied to the
intermediate-level pages of the index.
OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity, leaving enough space for at least
one row of the maximum size the index can have, given the set of keys on the intermediate

pages.
FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or alteration. The value specified must be an

293

integer value from 1 to 100. The default is 0.

Fill factor values 0 and 100 are identical in all respects.

IGNORE_DUP_KEY = { ON | OFF }
Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The option has no effect when executing CREATE INDEX,
ALTER INDEX, or UPDATE. The default is OFF.
ON

A warning message will occur when duplicate key values are inserted into a unique index.

Only the rows violating the uniqueness constraint will fail.

OFF

An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,
XML indexes, spatial indexes, and filtered indexes.
To view IGNORE_DUP_KEY, use sys.indexes.
In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH
IGNORE_DUP_KEY = ON.
STATISTICS_NORECOMPUTE = { ON | OFF }
Specifies whether statistics are recomputed. The default is OFF.
ON
Out-of-date statistics are not automatically recomputed.
OFF

Automatic statistics updating are enabled.
ALLOW_ROW_LOCKS = { ON | OFF }
Specifies whether row locks are allowed. The default is ON.

ON
Row locks are allowed when accessing the index. The Database Engine determines when

row locks are used.

OFF

Row locks are not used.
ALLOW_PAGE_LOCKS = { ON | OFF }
Specifies whether page locks are allowed. The default is ON.
ON

294

http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

Page locks are allowed when accessing the index. The Database Engine determines when
page locks are used.

OFF

Page locks are not used.

SORT_IN_TEMPDB = { ON | OFF }
Specifies whether to store sort results in tempdb. The default is OFF.
ON

The intermediate sort results that are used to build the index are stored in tempdb. This
may reduce the time required to create an index if tempdb is on a different set of disks
than the user database. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF.

Unique nonclustered indexes cannot be created online. This includes indexes that are created due to a
UNIQUE or PRIMARY KEY constraint.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source
table. This enables queries or updates to the underlying table and indexes to proceed. At
the start of the operation, a Shared (S) lock is held on the source object for a very short
period of time. At the end of the operation, for a short period of time, an S (Shared) lock is
acquired on the source if a nonclustered index is being created; or an SCH-M (Schema
Modification) lock is acquired when a clustered index is created or dropped online and
when a clustered or nonclustered index is being rebuilt. ONLINE cannot be set to ON when
an index is being created on a local temporary table.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered index, or rebuilds or drops a nonclustered index,
acquires a Schema modification (Sch-M) lock on the table. This prevents all user access to
the underlying table for the duration of the operation. An offline index operation that
creates a nonclustered index acquires a Shared (S) lock on the table. This prevents updates
to the underlying table but allows read operations, such as SELECT statements.

For more information, see How Online Index Operations Work.

295

http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�

Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

MAXDOP = max_degree_of parallelism

Overrides the max degree of parallelism configuration option for the duration of the index
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option. Use MAXDOP to limit the number of processors used in a
parallel plan execution. The maximum is 64 processors.

max_degree_of_parallelism can be:
1

Suppresses parallel plan generation.
>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

DATA_COMPRESSION

Specifies the data compression option for the specified table, partition number or range of
partitions. The options are as follows:

NONE

Table or specified partitions are not compressed.
ROW

Table or specified partitions are compressed by using row compression.
PAGE

Table or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,..n])
Specifies the partitions to which the DATA_COMPRESSION setting applies. If the table is not

296

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option will apply to all partitions of a
partitioned table.

<partition_number_expression> can be specified in the following ways:
e Provide the number a partition, for example: ON PARTITIONS (2).

e Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

e Provide both ranges and individual partitions, for example: ON PARTITIONS (2, 4, 6 TO
8).

<range> can be specified as partition numbers separated by the word TO, for example: ON

PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

REBUILD WITH

(
DATA COMPRESSION

NONE ON PARTITIONS (1),
ROW ON PARTITIONS (2, 4, 6 TO 8),

DATA COMPRESSION
PAGE ON PARTITIONS (3, 5)

DATA COMPRESSION
)

<single_partition_rebuild__option>
In most cases, rebuilding an index rebuilds all partitions of a partitioned index. The following
options, when applied to a single partition, do not rebuild all partitions.

e SORT_IN_TEMPDB
e MAXDOP
e DATA_COMPRESSION
Remarks
For a complete description of index options, see CREATE INDEX (Transact-SQL).
See Also
ALTER TABLE
column constraint

computed column definition

table constraint

ALTER TRIGGER

Modifies the definition of a DML, DDL, or logon trigger that was previously created by the
CREATE TRIGGER statement. Triggers are created by using CREATE TRIGGER. They can be

297

created directly from Transact-SQL statements or from methods of assemblies that are created
in the Microsoft .NET Framework common language runtime (CLR) and uploaded to an instance
of SQL Server. For more information about the parameters that are used in the ALTER TRIGGER
statement, see Making Schema Changes on Publication Databases.

=5 Transact-SQL Syntax Conventions

Syntax

Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML
Trigger)

ALTER TRIGGER schema_name.trigger_name
ON (table |view)

[WITH <dml_trigger_option> [,...n]]
(FOR | AFTER | INSTEAD OF)
{[DELETE] [, J[INSERT][,][UPDATE]}

[NOT FOR REPLICATION]
AS { sql_statement [;][..n]| EXTERNAL NAME <method specifier> [;]}

<dml_trigger_option> ::=
[ENCRYPTION]
[<EXECUTE AS Clause>]

<method_specifier> ::=

assembly name.class_name.method name

Trigger on a CREATE, ALTER, DROP, GRANT, DENY, REVOKE, or UPDATE statement
(DDL Trigger)

ALTER TRIGGER trigger_ name

ON { DATABASE | ALL SERVER }

[WITH <ddI_trigger_option>[,...n]]

{ FOR | AFTER } { event_type [,..n]| event_group }

AS { sql_statement [;] | EXTERNAL NAME <method specifier>
[;]1}

}

<ddl_trigger_ option> ::=

298

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[ENCRYPTION]
[<EXECUTE AS Clause>]

<method_specifier> ::=

assembly name.class_name.method name

Trigger on a LOGON event (Logon Trigger)

ALTER TRIGGER trigger_ name

ON ALL SERVER

[WITH <logon_trigger_option> [,...n]]

{ FOR | AFTER } LOGON

AS { sql_statement [;][,..n]| EXTERNAL NAME < method specifier > [;]}

<logon_trigger option> ::=
[ENCRYPTION]
[EXECUTE AS Clause]

<method_specifier> ::=

assembly name.class_name.method name

Arguments
schema_name

Is the name of the schema to which a DML trigger belongs. DML triggers are scoped to the
schema of the table or view on which they are created. schema_name is optional only if the
DML trigger and its corresponding table or view belong to the default schema. schema_name
cannot be specified for DDL or logon triggers.

trigger_name

Is the existing trigger to modify.

table | view

Is the table or view on which the DML trigger is executed. Specifying the fully-qualified name
of the table or view is optional.

DATABASE

Applies the scope of a DDL trigger to the current database. If specified, the trigger fires
whenever event_type or event_group occurs in the current database.

ALL SERVER

Applies the scope of a DDL or logon trigger to the current server. If specified, the trigger fires

299

whenever event_type or event_group occurs anywhere in the current server.

WITH ENCRYPTION
Encrypts the sys.syscomments sys.sql_modules entries that contain the text of the ALTER

TRIGGER statement. Using WITH ENCRYPTION prevents the trigger from being published as
part of SQL Server replication. WITH ENCRYPTION cannot be specified for CLR triggers.

If a trigger is created by using WITH ENCRYPTION, it must be specified again in the ALTER TRIGGER
statement for this option to remain enabled.

EXECUTE AS

Specifies the security context under which the trigger is executed. Enables you to control the
user account the instance of SQL Server uses to validate permissions on any database objects
that are referenced by the trigger.

For more information, see EXECUTE AS.

AFTER

Specifies that the trigger is fired only after the triggering SQL statement is executed
successfully. All referential cascade actions and constraint checks also must have been
successful before this trigger fires.

AFTER is the default, if only the FOR keyword is specified.
DML AFTER triggers may be defined only on tables.

INSTEAD OF

Specifies that the DML trigger is executed instead of the triggering SQL statement, therefore,
overriding the actions of the triggering statements. INSTEAD OF cannot be specified for DDL
or logon triggers.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE statement can be defined
on a table or view. However, you can define views on views where each view has its own
INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on views created by using WITH CHECK OPTION. SQL
Server raises an error when an INSTEAD OF trigger is added to a view for which WITH CHECK
OPTION was specified. The user must remove that option using ALTER VIEW before defining
the INSTEAD OF trigger.

{[DELETE][,][INSERT]1[,]1[UPDATE]}|{[INSERT][,][UPDATE]}

Specifies the data modification statements, when tried against this table or view, activate the
DML trigger. At least one option must be specified. Any combination of these in any order is
allowed in the trigger definition. If more than one option is specified, separate the options
with commas.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that have a referential
relationship specifying a cascade action ON DELETE. Similarly, the UPDATE option is not
allowed on tables that have a referential relationship specifying a cascade action ON

300

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

UPDATE. For more information, see ALTER TABLE (Transact-SOL).

event_type

Is the name of a Transact-SQL language event that, after execution, causes a DDL trigger to
fire. Valid events for DDL triggers are listed in DDL Events.

event_group

Is the name of a predefined grouping of Transact-SQL language events. The DDL trigger fires
after execution of any Transact-SQL language event that belongs to event_group. Valid event
groups for DDL triggers are listed in DDL Event Groups. After ALTER TRIGGER has

finished running, event_group also acts as a macro by adding the event types it covers to the

sys.trigger_events catalog view.

NOT FOR REPLICATION
Indicates that the trigger should not be executed when a replication agent modifies the table
involved in the trigger.

sql_statement

Is the trigger conditions and actions.

<method_specifier>

Specifies the method of an assembly to bind with the trigger. The method must take no
arguments and return void. class_hname must be a valid SQL Server identifier and must exist
as a class in the assembly with assembly visibility. The class cannot be a nested class.

Remarks
For more information about ALTER TRIGGER, see Remarks in CREATE TRIGGER.

The EXTERNAL_NAME and ON_ALL_SERVER options are not available in a contained
database.

DML Triggers

ALTER TRIGGER supports manually updatable views through INSTEAD OF triggers on tables and
views. SQL Server applies ALTER TRIGGER the same way for all kinds of triggers (AFTER,
INSTEAD-OF).

The first and last AFTER triggers to be executed on a table can be specified by using
sp_settriggerorder. Only one first and one last AFTER trigger can be specified on a table. If there
are other AFTER triggers on the same table, they are randomly executed.

If an ALTER TRIGGER statement changes a first or last trigger, the first or last attribute set on the
modified trigger is dropped, and the order value must be reset by using sp_settriggerorder.

An AFTER trigger is executed only after the triggering SQL statement has executed successfully.
This successful execution includes all referential cascade actions and constraint checks
associated with the object updated or deleted. The AFTER trigger operation checks for the

301

http://msdn.microsoft.com/en-us/library/62ef24b4-3553-4aed-b62a-670980bae501(SQL.110)�
http://msdn.microsoft.com/en-us/library/12b45cc3-2f91-4609-bb8a-3e82e28bf642(SQL.110)�

effects of the triggering statement and also all referential cascade UPDATE and DELETE actions
that are caused by the triggering statement.

When a DELETE action to a child or referencing table is the result of a CASCADE on a DELETE
from the parent table, and an INSTEAD OF trigger on DELETE is defined on that child table, the
trigger is ignored and the DELETE action is executed.

DDL Triggers
Unlike DML triggers, DDL triggers are not scoped to schemas. Therefore, the OBJECT_ID,
OBJECT_NAME, OBJECTPROPERTY, and OBJECTPROPERTY(EX) cannot be used when querying

metadata about DDL triggers. Use the catalog views instead. For more information, see Getting
Information About DDL Triggers.

Permissions

To alter a DML trigger requires ALTER permission on the table or view on which the trigger is
defined.

To alter a DDL trigger defined with server scope (ON ALL SERVER) or a logon trigger requires
CONTROL SERVER permission on the server. To alter a DDL trigger defined with database scope
(ON DATABASE) requires ALTER ANY DATABASE DDL TRIGGER permission in the current
database.

Examples

The following example creates a DML trigger that prints a user-defined message to the client
when a user tries to add or change data in the SsalesPersonQuotaHistory table. The trigger is
then modified by using ALTER TRIGGER to apply the trigger only on INSERT activities. This
trigger is helpful because it reminds the user that updates or inserts rows into this table to also
notify the Compensation department.

USE AdventureWorks2012;

GO

IF OBJECT_ID(N'Sales.bonus_reminder', N'TR') IS NOT NULL
DROP TRIGGER Sales.bonus reminder;

GO

CREATE TRIGGER Sales.bonus reminder

ON Sales.SalesPersonQuotaHistory

WITH ENCRYPTION

AFTER INSERT, UPDATE

AS RAISERROR ('Notify Compensation', 16, 10);

GO

-- Now, change the trigger.

USE AdventureWorks2012;

GO

302

http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�

ALTER TRIGGER Sales.bonus_reminder

ON Sales.SalesPersonQuotaHistory

AFTER INSERT

AS RAISERROR ('Notify Compensation', 16, 10);
GO

See Also

DROP TRIGGER

ENABLE TRIGGER

DISABLE TRIGGER

EVENTDATA

sp_helptrigger

Create a Stored Procedure

sp _addmessage (Transact-SQL)
Transactions

Getting Information About DML Triggers

Getting Information about DDL Triggers

sys.triggers
sys.trigger _events

sys.sql modules

sys.assembly modules

sys.server triggers

sys.server trigger events

sys.server sgl modules

sys.server assembly modules

Making Schema Changes on Publication Databases

ALTER USER

Renames a database user or changes its default schema.
s Transact-SQL Syntax Conventions

Syntax

ALTER USER userName
WITH <set_item> [,..n]

303

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/e486d39b-771d-488d-a786-7136433a2203(SQL.110)�
http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/54746d30-f944-40e5-a707-f2d9be0fb9eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b41e33a-c1ca-4b2a-9464-312b0ed3ca89(SQL.110)�
http://msdn.microsoft.com/en-us/library/37574aac-181d-4aca-a2cc-8abff64237dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/92540447-131c-491c-b033-c064c7d950e1(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/be7d8a59-3c00-4f1b-b4b0-3dcd5572e002(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ef9a8b9-c470-4a61-b0c4-ee24ad871d63(SQL.110)�
http://msdn.microsoft.com/en-us/library/af799e38-2d16-49b2-bcf5-6f9199af899e(SQL.110)�
http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

<set_item> =
NAME = newUserName
| DEFAULT_SCHEMA = { schemaName | NULL }
| LOGIN = loginName
| PASSWORD = 'password' [OLD_PASSWORD = 'oldpassword']
| DEFAULT_LANGUAGE = { NONE | <Icid> | <language name> | <language alias> }

Arguments

userName
Specifies the name by which the user is identified inside this database.

LOGIN = loginName
Re-maps a user to another login by changing the user's Security Identifier (SID) to match the
login's SID.

NAME = newUserName

Specifies the new name for this user. newUserName must not already occur in the current
database.

DEFAULT_SCHEMA = { schemaName | NULL }

Specifies the first schema that will be searched by the server when it resolves the names of
objects for this user. Setting the default schema to NULL removes a default schema from a
Windows group. The NULL option cannot be used with a Windows user.

PASSWORD = 'password’

Specifies the password for the user that is being changed. Passwords are case-sensitive.

This option is available only for contained users. See Understanding Contained Databases and
sp _migrate user to contained for more information.

OLD_PASSWORD = 'oldpassword’

The current user password that will be replaced by 'password'. Passwords are case-sensitive.
OLD_PASSWORD is required to change a password, unless you have ALTER ANY USER
permission. Requiring OLD_PASSWORD prevents users with IMPERSONATION permission
from changing the password.

This option is available only for contained users.

DEFAULT_LANGUAGE = { NONE | <Icid> | <language name> | <language alias> }

Specifies a default language to be assigned to the user. If this option is set to NONE, the
default language is set to the current default language of the database. If the default

304

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3a49ff6-46ad-4ee7-b6fe-7e54213dc33e(SQL.110)�

language of the database is later changed, the default language of the user will remain
unchanged. DEFAULT_LANGUAGE can be the local ID (Icid), the name of the language, or the
language alias.

This option may only be specified in a contained database and only for contained users.

Remarks

The default schema will be the first schema that will be searched by the server when it resolves
the names of objects for this database user. Unless otherwise specified, the default schema will
be the owner of objects created by this database user.

If the user has a default schema, that default schema will used. If the user does not have a
default schema, but the user is a member of a group that has a default schema, the default
schema of the group will be used. If the user does not have a default schema, and is a member
of more than one group that has a default schema, the schema of the Windows group with the
lowest principle_id will be used. If no default schema can be determined for a user, the dbo
schema will be used.

DEFAULT_SCHEMA can be set to a schema that does not currently occur in the database.
Therefore, you can assign a DEFAULT_SCHEMA to a user before that schema is created.

DEFAULT_SCHEMA cannot be specified for a user who is mapped to a certificate, or an
asymmetric key.

@ Important
The value of DEFAULT_SCHEMA is ignored if the user is a member of the sysadmin fixed
server role. All members of the sysadmin fixed server role have a default schema of dbo.

You can change the name of a user who is mapped to a Windows login or group only when the
SID of the new user name matches the SID that is recorded in the database. This check helps
prevent spoofing of Windows logins in the database.

The WITH LOGIN clause enables the remapping of a user to a different login. Users without a
login, users mapped to a certificate, or users mapped to an asymmetric key cannot be re-
mapped with this clause. Only SQL users and Windows users (or groups) can be remapped. The
WITH LOGIN clause cannot be used to change the type of user, such as changing a Windows
account to a SQL Server login.

The name of the user will be automatically renamed to the login name if the following
conditions are true.

e The useris a Windows user.

e The name is a Windows name (contains a backslash).

¢ No new name was specified.

e The current name differs from the login name.

Otherwise, the user will not be renamed unless the caller additionally invokes the NAME clause.

305

The name of a user mapped to a SQL Server login, a certificate, or an asymmetric key cannot
contain the backslash character (\).

@ caution

Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Security

A user who has ALTER ANY USER permission can change the default schema of any
user. A user who has an altered schema might unknowingly select data from the wrong
table or execute code from the wrong schema.

Permissions

To change the name of a user or remap the user to a different login requires the ALTER ANY
USER permission.

To change the default schema or language requires ALTER permission on the user. Users can
change only their own default schema or language.
Examples

A. Changing the name of a database user

The following example changes the name of the database user Mary5 to Mary51.
USE AdventureWorks2012;

ALTER USER Mary5 WITH NAME = Marybl;

GO

B. Changing the default schema of a user

The following example changes the default schema of the user Mary51 to Purchasing.
USE AdventureWorks2012;

ALTER USER Mary51 WITH DEFAULT SCHEMA = Purchasing;

GO

C. Changing several options at once
The following example changes several options for a contained database user in one statement.

306

USE AdventureWorks2012;
GO

ALTER USER Philip

WITH NAME = Philipe

, DEFAULT SCHEMA = Development

, PASSWORD = 'Wlr77TTS98%ab@#’ OLD PASSWORD = 'New DevelOper'
, DEFAULT LANGUAGE = French ;

GO

See Also

CREATE USER (Transact-SQL)

DROP USER (Transact-SQL)
Understanding Contained Databases
eventdata (Transact-SQL)

Sp migrate user to contained

ALTER VIEW

Modifies a previously created view. This includes an indexed view. ALTER VIEW does not affect
dependent stored procedures or triggers and does not change permissions.

=k Transact-SQL Syntax Conventions

Syntax

ALTER VIEW [schema_name .] view_name [(column [,..n])]
[WITH <view_attribute> [,..n]]
AS select_statement

[WITH CHECK OPTION] [;]

<view_attribute> ;=

{
[ENCRYPTION]
[SCHEMABINDING]
[VIEW_METADATA]

}

Arguments

307

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3a49ff6-46ad-4ee7-b6fe-7e54213dc33e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

schema_name

Is the name of the schema to which the view belongs.

view_name

Is the view to change.

column

Is the name of one or more columns, separated by commas, that are to be part of the
specified view.

4 Important
Column permissions are maintained only when columns have the same name before and after ALTER
VIEW is performed.

.J Note

In the columns for the view, the permissions for a column name apply across a CREATE VIEW or ALTER
VIEW statement, regardless of the source of the underlying data. For example, if permissions are
granted on the SalesOrderID column in a CREATE VIEW statement, an ALTER VIEW statement can
rename the SalesOrderID column, such as to OrderRef, and still have the permissions associated with
the view using SalesOrderID.

ENCRYPTION

Encrypts the entries in Sys.syscomments that contain the text of the ALTER VIEW
statement. WITH ENCRYPTION prevents the view from being published as part of SQL Server
replication.

SCHEMABINDING

Binds the view to the schema of the underlying table or tables. When SCHEMABINDING is
specified, the base tables cannot be modified in a way that would affect the view definition.
The view definition itself must first be modified or dropped to remove dependencies on the
table to be modified. When you use SCHEMABINDING, the select_statement must include the
two-part names (schema.object) of tables, views, or user-defined functions that are
referenced. All referenced objects must be in the same database.

Views or tables that participate in a view created with the SCHEMABINDING clause cannot be
dropped, unless that view is dropped or changed so that it no longer has schema binding.
Otherwise, the Database Engine raises an error. Also, executing ALTER TABLE statements on
tables that participate in views that have schema binding fail if these statements affect the
view definition.

VIEW_METADATA
Specifies that the instance of SQL Server will return to the DB-Library, ODBC, and OLE DB
APIs the metadata information about the view, instead of the base table or tables, when
browse-mode metadata is being requested for a query that references the view. Browse-

mode metadata is additional metadata that the instance of Database Engine returns to the
client-side DB-Library, ODBC, and OLE DB APIs. This metadata enables the client-side APIs to

308

http://msdn.microsoft.com/en-us/library/767dd410-6bc9-4c4a-ab0f-6d2cf6163426(SQL.110)�

implement updatable client-side cursors. Browse-mode metadata includes information about
the base table that the columns in the result set belong to.

For views created with VIEW_METADATA, the browse-mode metadata returns the view name
and not the base table names when it describes columns from the view in the result set.

When a view is created by using WITH VIEW_METADATA, all its columns, except a timestamp
column, are updatable if the view has INSERT or UPDATE INSTEAD OF triggers. For more
information, see the Remarks section in CREATE VIEW.

AS

Are the actions the view is to take.

select_statement

Is the SELECT statement that defines the view.

WITH CHECK OPTION

Forces all data modification statements that are executed against the view to follow the
criteria set within select_statement.

Remarks
For more information about ALTER VIEW, see Remarks in CREATE VIEW.

If the previous view definition was created by using WITH ENCRYPTION or CHECK
OPTION, these options are enabled only if they are included in ALTER VIEW.

If a view currently used is modified by using ALTER VIEW, the Database Engine takes an
exclusive schema lock on the view. When the lock is granted, and there are no active users of
the view, the Database Engine deletes all copies of the view from the procedure cache. Existing
plans referencing the view remain in the cache but are recompiled when invoked.

ALTER VIEW can be applied to indexed views; however, ALTER VIEW unconditionally drops all
indexes on the view.

Permissions

To execute ALTER VIEW, at a minimum, ALTER permission on OBJECT is required.

Examples

The following example creates a view that contains all employees and their hire dates called
EmployeeHireDate. Permissions are granted to the view, but requirements are changed to
select employees whose hire dates fall before a certain date. Then, ALTER VIEW is used to
replace the view.

USE AdventureWorks2012 ;

GO

CREATE VIEW HumanResources.EmployeeHireDate
AS

309

SELECT p.FirstName, p.LastName, e.HireDate

FROM HumanResources.Employee AS e JOIN Person.Person AS p
ON e.BusinessEntityID = p.BusinessEntityID ;

GO

The view must be changed to include only the employees that were hired before 2002. If ALTER
VIEW is not used, but instead the view is dropped and re-created, the previously used GRANT
statement and any other statements that deal with permissions pertaining to this view must be
re-entered.

ALTER VIEW HumanResources.EmployeeHireDate

AS

SELECT p.FirstName, p.LastName, e.HireDate

FROM HumanResources.Employee AS e JOIN Person.Person AS p
ON e.BusinessEntityID = p.BusinessEntityID

WHERE HireDate < CONVERT (DATETIME, '20020101',101) ;

GO

See Also

CREATE TABLE

CREATE VIEW

DROP VIEW

Create a Stored Procedure
SELECT

EVENTDATA

Making Schema Changes on Publication Databases

ALTER WORKLOAD GROUP

Changes an existing Resource Governor workload group configuration, and optionally assigns it
to a to a Resource Governor resource pool.

=k Transact-SQL Syntax Conventions.

Syntax

ALTER WORKLOAD GROUP { group_name | "default" }
[WITH
([IMPORTANCE = { LOW | MEDIUM | HIGH }]
[[,]REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
[[,]REQUEST_MAX_CPU_TIME_SEC = value]

310

http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

[[,]1REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
[[,]1MAX_DOP =value]
[[,] GROUP_MAX_REQUESTS = value])

]

[USING { pool_name | "default" }]

(]

Arguments

group_name | "default”

Is the name of an existing user-defined workload group or the Resource Governor default

workload group.

Resource Governor creates the "default" and internal groups when SQL Server is installed.

The option "default" must be enclosed by quotation marks (") or brackets ([]) when used
with ALTER WORKLOAD GROUP to avoid conflict with DEFAULT, which is a system reserved
word. For more information, see Database Identifiers.

Predefined workload groups and resource pools all use lowercase names, such as "default”. This
should be taken into account for servers that use case-sensitive collation. Servers with case-insensitive
collation, such as SQL_Latin1_General_CP1_CI_AS, will treat "default" and "Default" as the same.

IMPORTANCE = { LOW | MEDIUM | HIGH }

Specifies the relative importance of a request in the workload group. Importance is one of

the following:

e LOW
e MEDIUM (default)
e HIGH

Internally each importance setting is stored as a number that is used for calculations.

IMPORTANCE is local to the resource pool; workload groups of different importance inside
the same resource pool affect each other, but do not affect workload groups in another
resource pool.

REQUEST_MAX_MEMORY_GRANT_PERCENT = value

Specifies the maximum amount of memory that a single request can take from the pool. This
percentage is relative to the resource pool size specified by MAX_MEMORY_PERCENT.

The amount specified only refers to query execution grant memory.

311

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

value must be 0 or a positive integer. The allowed range for value is from 0 through 100. The

default setting for value is 25.

Note the following:

e Setting value to 0 prevents queries with SORT and HASH JOIN operations in user-

defined workload groups from running.

e We do not recommend setting value greater than 70 because the server may be unable

to set aside enough free memory if other concurrent queries are running. This may

eventually lead to query time-out error 8645.

.J Note

If the query memory requirements exceed the limit that is specified by this
parameter, the server does the following:

For user-defined workload groups, the server tries to reduce the query degree of
parallelism until the memory requirement falls under the limit, or until the degree of
parallelism equals 1. If the query memory requirement is still greater than the limit,
error 8657 occurs.

For internal and default workload groups, the server permits the query to obtain the
required memory.

Be aware that both cases are subject to time-out error 8645 if the server has
insufficient physical memory.

REQUEST_MAX_CPU_TIME_SEC = value

Specifies the maximum amount of CPU time, in seconds, that a request can use. value must

be 0 or a positive integer. The default setting for value is 0, which means unlimited.

Resource Governor will not prevent a request from continuing if the maximum time is exceeded.
However, an event will be generated. For more information, see CPU Threshold Exceeded Event
Class.

REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value

Specifies the maximum time, in seconds, that a query can wait for memory grant (work buffer

memory) to become available.

A query does not always fail when memory grant time-out is reached. A query will only fail if there are

too many concurrent queries running. Otherwise, the query may only get the minimum memory grant,

resulting in reduced query performance.

value must be a positive integer. The default setting for value, 0, uses an internal calculation

based on query cost to determine the maximum time.

MAX_DOP = value

Specifies the maximum degree of parallelism (DOP) for parallel requests. value must be 0 or a

312

http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�

positive integer, 1 though 255. When value is 0, the server chooses the max degree of
parallelism. This is the default and recommended setting.

The actual value that the Database Engine sets for MAX_DOP by might be less than the specified
value. The final value is determined by the formula min(255, number of CPUs).

0 Caution
Changing MAX_DOP can adversely affect a server's performance. If you must change MAX_DOP, we
recommend that it be set to a value that is less than or equal to the maximum number of hardware
schedulers that are present in a single NUMA node. We recommend that you do not set MAX_DOP to
a value greater than 8.

MAX_DOP is handled as follows:

e MAX_DOP as a query hint is honored as long as it does not exceed workload group
MAX_DOP.

e MAX_DOP as a query hint always overrides sp_configure 'max degree of parallelism’.
e Workload group MAX_DOP overrides sp_configure 'max degree of parallelism'.

e If the query is marked as serial (MAX_DOP = 1) at compile time, it cannot be changed
back to parallel at run time regardless of the workload group or sp_configure setting.

After DOP is configured, it can only be lowered on grant memory pressure. Workload group
reconfiguration is not visible while waiting in the grant memory queue.

GROUP_MAX_REQUESTS = value

Specifies the maximum number of simultaneous requests that are allowed to execute in the
workload group. value must be 0 or a positive integer. The default setting for value, 0, allows
unlimited requests. When the maximum concurrent requests are reached, a user in that
group can log in, but is placed in a wait state until concurrent requests are dropped below
the value specified.

USING { pool_name | "default” }

Associates the workload group with the user-defined resource pool identified by pool_name,
which in effect puts the workload group in the resource pool. If pool_name is not provided or
if the USING argument is not used, the workload group is put in the predefined Resource
Governor default pool.

The option "default" must be enclosed by quotation marks (") or brackets ([]) when used
with ALTER WORKLOAD GROUP to avoid conflict with DEFAULT, which is a system reserved
word. For more information, see Database Identifiers.

The option "default" is case-sensitive.

Remarks
ALTER WORKLOAD GROUP is allowed on the default group.

313

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

Changes to the workload group configuration do not take effect until after ALTER RESOURCE
GOVERNOR RECONFIGURE is executed.

When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.
REQUEST_MEMORY_GRANT_PERCENT: In SQL Server 2005, index creation is allowed to use
more workspace memory than initially granted for improved performance. This special handling
is supported by Resource Governor in SQL Server 2012. However, the initial grant and any
additional memory grant are limited by resource pool and workload group settings.

Index Creation on a Partitioned Table

The memory consumed by index creation on non-aligned partitioned table is proportional to
the number of partitions involved. If the total required memory exceeds the per-query limit
(REQUEST_MAX_MEMORY_GRANT_PERCENT) imposed by the Resource Governor workload
group setting, this index creation may fail to execute. Because the "default" workload group
allows a query to exceed the per-query limit with the minimum required memory to start for
SQL Server 2005 compatibility, the user may be able to run the same index creation in "default”
workload group, if the "default" resource pool has enough total memory configured to run such

query.
Permissions
Requires CONTROL SERVER permission.

Examples

The following example shows how to change the importance of requests in the default group
from MEDIUM to LOW.

ALTER WORKLOAD GROUP "default"

WITH (IMPORTANCE = LOW)

GO

ALTER RESOURCE GOVERNOR RECONFIGURE
GO

The following example shows how to move a workload group from the pool that it is in to the
default pool.

ALTER WORKLOAD GROUP adHoc

USING [default];

GO

ALTER RESOURCE GOVERNOR RECONFIGURE
GO

See Also

Resource Governor

314

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

CREATE WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
CREATE RESOURCE POOL (Transact-SQL)
ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

ALTER XML SCHEMA COLLECTION

Adds new schema components to an existing XML schema collection.
&5 Transact-SQL Syntax Conventions

Syntax

ALTER XML SCHEMA COLLECTION [relational schema.]sql identifier ADD 'Schema
Component'

Arguments

relational_schema

Identifies the relational schema name. If not specified, the default relational schema is
assumed.

sql_identifier
Is the SQL identifier for the XML schema collection.

'Schema Component’

Is the schema component to insert.

Remarks

Use the ALTER XML SCHEMA COLLECTION to add new XML schemas whose namespaces are not
already in the XML schema collection, or add new components to existing namespaces in the
collection.

The following example adds a new <element> to the existing namespace
http://MySchema/test xml schema in the collection MyCol1l.

-- First create an XML schema collection.

CREATE XML SCHEMA COLLECTION MyColl AS '
<schema
xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://MySchema/test xml schema">

<element name="root" type="string"/>

315

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://www.w3.org/2001/XMLSchema
http://MySchema/test_xml_schema
http://MySchema/test_xml_schema

</schema>"
-- Modify the collection.
ALTER XML SCHEMA COLLECTION MyColl ADD '
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://MySchema/test xml schema">
<element name="anotherElement" type="byte"/>
</schema>'

ALTER XML SCHEMA adds element <anotherElement> to the previously defined namespace
http://MySchema/test xml schema.

Note that if some of the components you want to add in the collection reference components

that are already in the same collection, you must use <import
namespace="referenced component namespace" />. However, it is not valid to use the

current schema namespace in <xsd: import>, and therefore components from the same target

namespace as the current schema namespace are automatically imported.

To remo