

[bookmark: _GoBack]Scalable Customization Design in Microsoft Dynamics CRM
Version: 1.0
Applies To: Microsoft Dynamics CRM Online,
Microsoft Dynamics CRM 2013, Microsoft Dynamics CRM 2015
Author: Roger Gilchrist
COMPANY: Microsoft Corporation
Released: March 2015
[image:]

[bookmark: O_47742]

Copyright
This document is provided “as-is”. Information and views expressed in this document, including URL and other Internet Web site references, may change without notice.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.
© 2015 Microsoft. All rights reserved.

Table of Contents

Introduction	5
The challenge	5
Common symptoms	5
Understanding causes	7
Design for platform constraints	7
Database transactions	10
Transaction and locking awareness	10
Locking and transactions	10
Blocking	11
Lock release	12
Intermittent errors: timing	13
Transaction control	13
How the UI utilizes transactions	13
Event pipeline: platform step	14
Customization requests	15
Sync plug-ins (pre or post operation: in transaction context)	15
Sync plug-ins (pre and post operation: in transaction context)	15
Sync plug-ins (pre-validation: outside transaction context)	16
Sync plug-ins (pre-validation: in transaction context)	17
Async plug-ins	18
Plug-in transaction use summary	19
Synchronous workflows	20
Asynchronous workflows	20
Custom workflow activity	21
Custom actions	22
Web service requests	23
oData requests	24
Concurrency issues	24
Concurrent usage	24
Async operations in parallel	25
Why it’s important to understand transactions: Auto numbering example	26
Approach 1: Out of a transaction	27
Approach 2: In a plug-in transaction	28
Approach 3: Pre-lock in a plug-in transaction	30
Serialization and Timeouts	33
Chain of actions	34
Running into platform constraints	35
Impact on Usage	36
Transaction design patterns	36
Don’t avoid locking	36
Transaction usage: Nolock hint	36
Consider order of locks	37
Hold contentious locks for shortest period	39
Reduce length of transactions	39
Optimize requests	41
Reduce chain of events	42
Avoid multiple updates to the same record	43
Only update things you need to	44
Multiple triggers on same event	44
When to use different types of customization	45
Plug-ins/workflows aren’t batch processing mechanisms	46
Setting up security	46
Diagram related actions	47
Isolation modes	48
Transaction diagnosis	48
Database analysis	49
Identify lock chains	49
Review transaction use from profile	50
CRM analysis	51
Summary	52

ii	Scalable Customizations in Dynamics CRM	March 2015
March 2015	Scalable Customizations in Dynamics CRM	51
[bookmark: O_57344][bookmark: _Toc325444405][bookmark: _Toc325443501][bookmark: _Toc325405253][bookmark: _Toc325503563][bookmark: _Toc325503725][bookmark: bmBodyStart][bookmark: _Toc418167967]Introduction
Microsoft Dynamics CRM is designed to protect itself and its users from long running activities that could affect both the response times for the user making a request and the stability and responsiveness of the system for other users.
A challenge faced by some customers implementing Dynamics CRM solutions are errors thrown by the platform or the underlying Microsoft SQL Server database when these protective measures take effect. This is often interpreted as the platform not being able to scale or incorrectly terminating or throttling requests to the system.
This paper is based on experiences investigating and addressing the true underlying causes of the majority of these types of challenges. It describes how the platform protects itself from the impact of these requests imposed on the system, as well as explains why this behavior is most often the result of custom implementations not understanding the impact on blocking and transaction usage within the platform.
This paper also describes how optimizing a custom implementation to avoid these types of behaviors will not only avoid platform errors, but also enable better performance and end user experiences as a result. It provides good design practices and identifies common errors to avoid.
[bookmark: _Toc418167968]The challenge
Investigating and addressing the challenges in this area typically starts when certain types of errors and symptoms appear in the system. These are often perceived to be problems in the platform and the necessary remedial step is to loosen up the platform constraints that typically trigger a slow running request to become a reported error.
In reality, while the errors could be avoided in the short term by relaxing some of the platform constraints, these constraints are there for good reasons and are designed to prevent an excessively long running action from affecting other users or system performance. While the constraints could be relaxed to avoid the errors, users would still be experiencing slow response times and this would be affecting other users’ experience of the system as well.
Therefore, it’s preferable to look at the root causes of why these constraints are being triggered and causing errors, and then optimize the custom implementation to avoid them. This will provide a more consistent and more responsive system for the users.
[bookmark: _Toc418167969]Common symptoms
These types of problems typically exhibit a combination of common symptoms as shown in the following diagram.

In reality a combination of these symptoms can and often would be reported together when these challenges are faced. It’s not always the case that these symptoms are an indicator of problems with the design. Other issues, such as disk I/O limitations in the database or a product bug, can cause similar symptoms. But the most common cause of these kinds of symptoms, and therefore one worth checking for, relates directly to the design of the custom implementation and how it affects the system.

“Why should we worry….doesn’t CRM just take care of this…..”

It does as far as it can…..but it uses locking and transactions to protect the system against conflicts when required.
We also provide tools for you to make choices about your particular scenario and to decide where it is important to control access to data. But those choices can be made incorrectly, and it is possible to introduce unintended consequences in custom code.
These problems typically have an impact on the user experience through slower response times so understanding the implications of certain actions can lead to more consistent and better results for users.
[bookmark: _Toc418167970]Understanding causes
Common symptoms have causes that force particular requests to run slowly and then to trigger platform constraints. The following diagram shows typical symptoms with some of the common root causes of these symptoms.

The underlying impact of long running transactions, database blocking, and complex queries can all overlap with each other and amplify their effects to cause these symptoms. For example, a series of long running queries that are completely independent of each other may cause slow user response times, but only once they require access to the same resources do the response times become so slow that they become errors.
[bookmark: _Toc418167971]Design for platform constraints
The Dynamics CRM platform has a number of deliberate constraints it imposes to prevent any one action having too detrimental an impact on the rest of the system and, therefore, on users.
While this behavior can be frustrating since it can block specific requests from completing and often leads to questions around whether the constraints can be lifted, this is rarely a good approach when you consider the broader implications.
When the platform is used as intended and an implementation is optimized, it’s very rare that there is a scenario where these constraints would be encountered. Running into the constraint is almost always an indication of behaviors that will be tying up resources excessively in the system. This means other requests either from the same user or other users can’t be processed. So while it may be possible to loosen the constraint on the request being blocked, what that actually means is that the resources it is consuming are tied up for even longer causing bigger impacts on other users.
At the heart of these constraints is the idea that the Dynamics CRM platform is a transactional, multiuser application where quick response to user demand is the priority. It’s not intended to be a platform for long running or batch processing. It is possible to drive a series of short requests to Dynamics CRM but Dynamics CRM isn’t designed to handle batch processing. Equally, where there are activities running large iterative processing, Dynamics CRM isn’t designed to handle that iterative processing.
In those scenarios, a separate service can be used to host the long running process, driving shorter transactional requests to Dynamics CRM itself. For example, hosting BizTalk or Microsoft SQL Server Integration Services (SSIS) elsewhere and then driving individual create or update requests to Dynamics CRM is a much better pattern than using a plug-in to loop through thousands of records being created in Dynamics CRM.
It is worth being aware of and understanding the platform constraints that do exist, so that you can allow for them in your application design. Also, if you do encounter these errors, you can understand why they are happening and what you can change to avoid them.

A common misconception is that these limits are only applied in Dynamics CRM Online. This isn’t accurate as they are applied equally in an on-premises deployment of Dynamics CRM. In an on-premises deployment, there is more scope to configure and relax these constraints, which gives the impression of more throttling in Dynamics CRM Online.
However, as described earlier, hitting these constraints is an indication of behavior that affects other areas of your system, so investigating and addressing the root cause of the behavior is preferable to simply loosening the constraints, even in an on-premises deployment. In an on-premises deployment you’re still affecting your users with slower than necessary performance.
[bookmark: _Toc418167972]Database transactions
One of the most fundamental concepts behind many of the challenges faced here is that of the database transaction. In Dynamics CRM, the database is at the heart of almost all requests to the system and the place data consistency is primarily enforced.
· No CRM activities, either core platform or implementation, work completely in isolation.
· All CRM activities interact with the same database resources, either at a data level or an infrastructure level such as processor, memory, or IO usage.
· To protect against conflicting changes, each request takes locks on resources to be viewed or changed.
· Those locks are taken within a transaction and not released until the transaction is committed or aborted.
[bookmark: _Toc418167973]Transaction and locking awareness
A common reason that problems can occur in this area is the lack of awareness of how customizations can affect transactions.
[bookmark: _Toc418167974]Locking and transactions
Although the details of how this is done is beyond the scope of this document, the most simple element to consider is that as Dynamics CRM interacts with data in its database, SQL Server determines the appropriate locks to be taken by transactions on that data such as:
· When retrieving a particular record, SQL Server takes a read lock on that record.
· When retrieving a range of records, in some scenarios it can take a read lock on that range of records or the entire table.
· When creating a record, it generates a write lock against that record.
· When updating a record, it takes a write lock against the record.
· When a lock is taken against a table or record, it’s also taken against any corresponding index records.

However, it’s possible to influence the scope and duration of these locks. It’s also possible to indicate to SQL Server that no lock is required for certain scenarios.
Let’s consider SQL Server database locking and the impact of separate requests trying to access the same data. In the following example, creating an account has set up a series of processes, some with plug-ins that are triggered as soon as the record is created, and some in a related asynchronous workflow that is initiated at creation.
The example shows the consequences when an account update process has complex post processing while other activity also interacts with the same account record. If an asynchronous workflow is processed while the account update transaction is still in progress, this workflow could be blocked waiting to obtain an update lock to change the same account record, which is still locked.

[image:]
It should be noted that transactions are only held within the lifetime of a particular request to the platform.
Locks aren’t held at a user session level or while information is being shown in the user interface. As soon as the platform has completed the request, it releases the database connection, the related transaction, and any locks it has taken.
[bookmark: _Toc418167975]Blocking
While the kind of blocking in the previous example can be inconvenient in and of itself, this can also lead to more serious consequences when you consider that Dynamics CRM is a platform that can process hundreds of concurrent actions. While holding a lock on an individual account record may have reasonably limited implications, what happens when a resource is more heavily contested?
For example, when each account is given a unique reference number it may lead to a single resource that is tracking the used reference numbers being blocked by every account creation process. If a lot of accounts are generated in parallel, overlapping requests will all need to access that auto numbering resource and will block it until they complete their action. The longer each account creation process takes, and the more concurrent requests there are, the more blocking occurs.
While the first request to grab the auto number resource lock can easily be completed, the second request will need to wait for the first to complete before it can check what the next unique reference number is. The third request will have to wait for both the first and second requests to complete. The more requests there are, the longer blocking will occur. If there are enough requests, and each request takes long enough, this can push the later requests to the point that they time out, even though individually they may complete correctly.

[image:]
[bookmark: _Toc418167976]Lock release
There are two primary reasons why a lock isn’t released but is held until the transaction is completed:
· The database server holds onto the lock for consistency in case the transaction will later make another request to update the data item.
· The database server also has to allow for the fact that an error or abort command issued later can cause it to roll the entire transaction back, so it needs to hold onto the locks for the entire lifetime of the transaction to ensure consistency.
It is important to recognize that even though your process may have completed any interactions with a particular piece of data, the lock will be held until the entire transaction is complete and committed. The longer the transaction is extended, the longer the lock will be held, preventing other threads from interacting with that data.
As will be shown later, this also includes related customizations that work within the same transaction and can significantly extend the lifetime of transactions such as synchronous workflows.

[image:]

[bookmark: _Toc418167977]Intermittent errors: timing
Intermittent behavior is an obvious symptom of blocking from concurrent activity. In particular, if repeating exactly the same action later succeeds when earlier it failed, there is a very strong likelihood that the error or slowness was caused by something else occurring at the same time.
That is important to realize as debugging a problem often involves stripping the offending functionality back to the bare minimum. However, when the problem only occurs intermittently, you may need to look at where the failing action is conflicting with another activity in the system, and you need to look at potential contention points. You can mitigate conflict by optimizing an individual process; however, the shorter the processing time, the less likely the activity will conflict with other processes.
[bookmark: _Toc418167978]Transaction control
While in most cases the way transactions are used can simply be left to the platform to manage, there are scenarios where the logic needed is complex enough that understanding and influence over transactions is required to achieve the desired results. Dynamics CRM offers a number of different customization approaches that impact differently on the way transactions are used.
When you understand how each type of customization participates in the platform transactions, you can model complex scenarios effectively in Dynamics CRM and predict their behavior.
As mentioned earlier, a transaction is only held during the lifetime of a request to the platform, it is not something that is maintained once the platform step is completed. This avoids transactions being held by an external client for long periods and blocking other platform activities.
The job of the platform is to maintain consistency throughout the platform transaction pipeline and where appropriate allow customizations to participate in that same transaction.
[bookmark: _Toc418167979]How the UI utilizes transactions
Before understanding how customizations interact with the platform, it is useful to understand how the core user interface (UI) uses requests to the platform, and how it affects transaction use.

[bookmark: _Toc418167980]Event pipeline: platform step
When an event pipeline is initiated, a SQL transaction is created to include the platform step. This ensures that all database activity performed by the platform is acted on consistently. The transaction is created at the start of the event pipeline and either committed or aborted when the processing is completed, depending on whether it was successful.
[image:]

[bookmark: _Toc418167981]Customization requests
It’s also possible to participate in the platform initiated transaction within customizations. Each type of customization participates in transactions in a different way. The following sections will describe each in turn.
[bookmark: _Toc418167982]Sync plug-ins (pre or post operation: in transaction context)
When plug-ins are registered for an event, they can be registered against a pre-operation or post-operation stage that is within the transaction. Any SDK requests from the plug-in will be performed within the transaction. This means the lifetime of the transaction, and any locks taken, will be extended.

[image:]

[bookmark: _Toc418167983]Sync plug-ins (pre and post operation: in transaction context)
Plug-ins can be registered against both the pre and post operation stages. In this case the transaction can extend even further because it will extend from the start of the pre-operation plug-in until the post-operation plug-in completes.

[image:]

[bookmark: _Toc418167984]Sync plug-ins (pre-validation: outside transaction context)
A plug-in can also be registered to act outside of the platform transaction by being registered on the pre-validation stage.
Note: It does NOT create its own transaction. As a result, each request through the SDK requested within the plug-in is acted upon independently within the database.

[image:]

This scenario only applies when the pre-validation is called as the first stage of a pipeline event. Even though the plug-in is registered on the pre-validation stage, it is possible it will participate in a transaction as the next section describes. It can’t be assumed that a pre-validation plug-in doesn’t participate in a transaction, although it is possible to check from the execution context if this is the case.
[bookmark: _Toc418167985]Sync plug-ins (pre-validation: in transaction context)
The related scenario occurs when a pre-validation plug-in is registered but the related pipeline event is triggered by an SDK request from within an existing transaction.
As the following diagram shows, creating an account can cause a pre-validation plug-in to perform initially outside of a transaction when the initial create is performed. If, as part of the post plug-in, an SDK request is made to create a related child account because that second event pipeline is initiated from within the parent pipeline, it will participate in the same transaction.
In that case, the pre-validation plug-in will discover that a transaction already exists and so will participate in that transaction even though it’s registered on the pre-validation stage.

[image:]

As previously mentioned, the plug-in can check the execution context for the IsInTransaction property, which will indicate if this plug-in is performing within a transaction or not.
[bookmark: _Toc418167986]Async plug-ins
A plug-in can also be registered to act asynchronously. In this case, the plug-in also acts outside of the platform transaction.
Note: The plug-in doesn’t create its own transaction; each request through the SDK requested within the plug-in is acted upon independently.

[bookmark: _Toc418167987]Plug-in transaction use summary
To summarize:
· Synchronous plug-ins typically participate in transactions.
· Async plug-ins never participate in a platform transaction; each request is performed independently.
· Pre-validation plug-ins don’t create a transaction but participate if one already exists.

	Event
	Stage name
	Stage number
	Transaction does not yet exist
	Transaction already exists

	Pre-Event
	Pre-validation
	10
	No transaction is created. Does not participate in transaction; each request uses independent transaction to the database
	Participates in existing transaction

	Pre-Event
	Pre-operation
	20
	Participates in existing transaction
	Participates in existing transaction

	Platform Core Operation
	Main operation
	30
	Participates in existing transaction
	Participates in existing transaction

	Post-Event
	Post-operation
	40
	Participates in existing transaction
	Participates in existing transaction

	Async
	
	
	No transaction is created. Does not participate in transaction; each request uses independent transaction to the database
	Not applicable

[bookmark: _Toc418167988]Synchronous workflows
From the perspective of transactions, synchronous workflows act as pre/post operation plug-ins. They therefore act within the platform pipeline transaction and can have the same effect on the length of the overall transaction.

[bookmark: _Toc418167989]Asynchronous workflows
Asynchronous workflows are triggered outside of the platform transaction.
Note: The workflow also does NOT create its own transaction and therefore each request through the SDK requested within the workflow is acted upon independently.
The following diagram shows the asynchronous workflow acting outside of the platform transaction and each step initiating its own independent transaction.

[bookmark: _Toc418167990]Custom workflow activity
Custom workflow activities act within the parent workflow context.
· Sync workflow: Acts within the transaction
· Async workflow: Acts outside the transaction
The following diagram shows custom activities first acting within a synchronous workflow and then within an asynchronous workflow.
[image:]

[bookmark: _Toc418167991]Custom actions
Custom actions can create their own transactions. This is a key feature. A custom action can create a separate transaction outside of the platform step depending on whether it is configured to Enable Rollback.
· Enable Rollback set
· If called through the SDK from a plug-in running within the transaction, and Enable Rollback is set, the custom action will act within the existing transaction.
· The custom action will otherwise create a new transaction and run within that.
· Enable Rollback not set
· The custom action won’t act within a transaction.

[image:]

[bookmark: _Toc418167992]Web service requests
When requests are made externally through web services, a pipeline is created and transaction handling within the pipeline occurs as previously discussed, but a transaction is not maintained once the response is returned. Since how long it will be until the next request is an unknown, the platform does not allow locking of resources which would block other activities.
When multiple requests are made within a plug-in using the same execution context, it is the common execution context that maintains the transaction reference and in synchronous plug-ins ensures each request is made within the same transaction. The ability to maintain an execution context across requests is not available outside of plug-ins and therefore a transaction cannot be maintained across separate requests made externally.
There are two special cases where multiple actions can be passed to the Dynamics CRM platform as part of a single web service request.
ExecuteMultiple
ExecuteMultiple allows multiple independent actions to be passed within the same web service request. Each of these requests is performed independently within the platform so there is no transaction context held between requests.
ExecuteTransaction
Dynamics CRM now has the ability to pass multiple actions within an ExecuteTransaction request. This allows multiple actions to be processed within the same database transaction, in a similar way to multiple SDK requests made from within a synchronous plug-in.
This ability would also have implications similar to multiple SDK requests; that is, if each action takes a long time (such as by making expensive queries or triggering a long chain of related synchronous plug-ins or workflows) this could lead to blocking issues in the broader platform.
[bookmark: _Toc418167993]oData requests
oData requests don’t pass in a transaction context and therefore can’t participate in a broader transaction. Plug-ins registered on an entity processed as part of an oData request can participate in the pipeline transaction generated by the oData request.
[bookmark: _Toc418167994]Concurrency issues
So we’ve talked about the impact of actions on transactions from a single request within Dynamics CRM. But what about when multiple concurrent requests occur?

[image:]

[bookmark: _Toc418167995]Concurrent usage
Once you have overlapping requests, the chance of collisions on locks becomes higher. The longer the transactions take, the longer the locks are held. The chances are even higher of collision and the overall impact would be greater on end users.
You also need to be aware of the multiple ways that activity can be driven onto the application, each of which is taking locks that could cause conflict with other actions within the system. In these cases locking is preventing inconsistencies of data occurring when overlapping actions occur on the same data.
Some key areas to consider design for, and check for if you do see problems, are:
· User driven activity: Directly through the user interface.
· Async actions: Activity that occurs later as a result of other actions. When this activity will be processed isn’t known at the time the initiating action is triggered.
· Batch activities: Either driven from within Dynamics CRM (such as bulk delete jobs or server side synchronization processing), or driven from external sources such as integration into another system.

[bookmark: _Toc418167996]Async operations in parallel
A common misconception is that async workflows or plug-ins are processed serially from a queue and there wouldn’t be conflict between them. This isn’t accurate, since Dynamics CRM processes multiple asynchronous activities in parallel both within each async service instance and across async service instances spread over different servers to increase throughput. Each async service actually retrieves jobs to be performed in batches of approximately 20 per service based on configuration and load.
If you initiate multiple asynchronous activities from the same event on the same record, they’re likely to process in parallel. As they fired on the same record, a common pattern is updates back to the same parent record; therefore the conflict opportunity is high.
As the following diagram shows, when a triggering event occurs, such as the creation of Account A, Dynamics CRM creates entries in the AsyncOperationBase table for each process or action to be taken. The Async Service monitors this table, picks up waiting requests in batches, and then processes them. Because the workflows are triggered at the same time, they are highly likely to be picked up in the same batch and processed at the same time.

[image:]

[bookmark: _Toc418167997]Why it’s important to understand transactions: Auto numbering example
One scenario that illustrates the common misunderstanding of how transactions are handled within Dynamics CRM is implementing an automatic numbering scheme.
In this scenario the requirement is typically to:
· Generate a unique number following a particular pattern.
· Allow for many concurrent requests to create the related type of records; for example, accounts that need a unique reference.
· Allow for sequential numbering of the unique numbers.
· Ensure that the number generation is consistent, but scalable, and does not error out under load. It also needs to ensure that duplicate numbers cannot be generated.
· Generate the number on the creation of the relevant record.
The typical approach involves variations of the following:
· Store the last used number in an auto number index data store; for example, a custom entity with a row per data type.
· Retrieve the last used number and increment that number.
· Record the new number against the newly generated record.
· Store the new number back as being the last used number in the auto number index store.
The following sections describe different approaches that can be taken within Dynamics CRM and highlight the implications, showcasing both the importance and benefit of understanding the way transactions are utilized.
[bookmark: _Toc418167998]Approach 1: Out of a transaction
The simplest approach is to realize that any use of a commonly required resource would introduce the potential for blocking. Since this has an impact on scalability you may decide you want to avoid a platform transaction when generating an auto number.
Let’s consider the scenario for auto numbering generation outside of the pipeline transaction in a pre-validation plug-in.

When you run this in isolation it works fine. It doesn’t, however, actually protect against concurrency errors. As the following diagram shows, if two requests in parallel both request the latest number and then both increment and update the value, you’ll end up with duplicate numbers. Because there is no locking held against the retrieved number, it is possible for a race condition to occur and both threads to end up with the same value.

[image:]

In many cases, even though multiple requests may be occurring, due to the limited window for overlapping this could work fine, but it is relying on luck rather than good design to prevent the duplication.
[bookmark: _Toc418167999]Approach 2: In a plug-in transaction
If you do the auto numbering from a plug-in registered within the transaction (txn), surely this works….right?

In the same circumstances of overlapping requests trying to generate numbers at the same time, it would be possible for both requests to be granted a shared read lock on the auto numbering table. Unfortunately, at the point the application tries to upgrade this to an exclusive lock, this would not be possible as there would be another shared read lock preventing this.

Depending on how the queries are being generated, the exact behavior can vary, but relying on those conditions and not being certain of the outcome where the uniqueness is essential isn’t ideal. Even if this does not generate a failure, the shared read ability could allow a duplicate number to be generated if the isolation modes aren’t correct. As the following diagram shows, both records end up with the same auto number value of 8.

[bookmark: _Toc418168000]Approach 3: Pre-lock in a plug-in transaction
Understanding the way the transactions work leads to being able to generate a safe way to do this.
In this approach, from the start of the transaction, a placeholder update is performed on the auto numbering record to some field (for example, UpdateInProgress) used purely for the purpose of maintaining consistency. It does this by writing an update indicating an update is about to start. This process then requests and takes an exclusive write lock on that row in the auto numbering table, blocking other processes from starting the auto numbering approach.
This then allows you to safely increment and write back the updated auto number without any other process being able to interfere.

[image:]

It does have the implication that this will serialize not only the auto numbering updates but also the account creation requests as both these steps occur in the same platform transaction. If the creation of accounts are quick actions then that may be a perfectly good approach and it ensures that account creation and auto numbering are performed consistently; if one fails they both fail and roll back.
In fact, where the other actions within the transaction are quick, this is the most consistent and efficient approach for implementing auto numbering in customizations.
If however, you also introduce other synchronous plug-ins or workflows that each take extended amounts of time to complete, serialization can become a real scalability challenge, as the auto numbering process not only blocks itself but blocks waiting for the other activities to complete.

[image:]

Normally, generation of the auto number would be done in a pre-event plug-in. You include the number in the input parameters to the create step and avoid a second update in the post processing to record the generated auto number against the account.
With the scalability implications in mind, if there is other complex processing in the account creation process, an alternative would be to move the auto number generation to a post create process, which still ensures a consistent update process. The benefit would be that it reduces the length of time within the transaction that the auto number record lock is held as the lock is only taken towards the end of the process. If the auto numbering table is the most highly contested resource and this approach is taken for all processes accessing it, this reduces the amount of contention overall.
The tradeoff here would be the need to perform an additional update to account, while reducing the overall length of time blocking waiting for the auto numbering record.

While this increases the amount of work needed to be done, that is, the additional update, the overall throughput of the system would be increased as more work could be done in parallel and only the auto numbering piece itself would serialize. Therefore, where it is essential that large amounts of other activity is also required as part of the same transaction, this would be the most efficient approach for implementing auto numbering in customizations.
[bookmark: _Toc418168001]Serialization and Timeouts
A high degree of serialization is typically what turns blocking into timeouts and poor throughput. When you have many concurrent requests, once they serialize and take a long time to process, each request in turn takes longer and longer until you start hitting timeouts and therefore errors.
The plug-in timeout starts from when it is initiated. A SQL timeout is calculated on the database request, so if a query blocks waiting for a long time, it can time out.

[image:]

This is a very common cause of SQL timeouts where requests in isolation perform correctly.
[bookmark: _Toc418168002]Chain of actions
As well as understanding the specific queries in the directly triggered activities, it is also necessary to consider where a chain of related events may occur.
Each SDK request made in a plug-in or as a step in a synchronous workflow not only triggers the direct action but may also cause other synchronous plug-ins and workflows to fire. Each of these synchronous activities will occur in the same transaction, extending the life of that transaction and any locks held possibly much longer than may be realized.

[image:]

The overall effect may be much greater than initially realized. This can often happen unintentionally where multiple people are building up the implementation, or it evolves over time.
[bookmark: _Toc418168003]Running into platform constraints
This is where the platform constraints can come in. And in reality this sort of behavior is exactly what the constraints are there to protect the broader system from.
Whenever this level of delay of processing occurs, it will have unintended consequences in other areas of the system and on other users. It’s therefore important to prevent this kind of activity from interfering with system performance.
While the easy way to avoid the errors may be to relax the platform constraints, this is not addressing the more fundamental impact on the overall scalability and performance of the system. This needs to be addressed by fixing and preventing the behavior triggering the constraints in the first place.
[bookmark: _Toc418168004]Impact on Usage
What often also has an impact on usage is a cascading series of implications of this behavior.

The initial issue is locks and therefore blocking in the system. This leads to slow user response times, which is then amplified as unpredictable and unreliable user response times, often in a particular area of the system.
In the extreme case or under heavier than normal load, this can then show through in any background batch processing with poor throughput. Eventually it can all escalate into errors occurring in the system.
It is common that when investigating SQL timeout errors, users are also reporting poor and unpredictable response times, and the connection had not been made between these as related issues.
[bookmark: _Toc418168005]Transaction design patterns
This section describes design patterns to avoid or minimize and their implications. Each design pattern needs to be considered in the context of the business problem being solved and can be useful as options to investigate.
[bookmark: _Toc418168006]Don’t avoid locking
[image:]Locking is a very important component of SQL Server and Dynamics CRM, and is essential to healthy operation and consistency of the system. For this reason it is important to understand its implications on design, particularly at scale.
[bookmark: _Toc418168007]Transaction usage: Nolock hint
One capability of the Dynamics CRM platform that is heavily used by views is the ability to specify that a query can be performed with a nolock hint, telling the database that no lock is needed for this query.
Views use this approach because there is no direct link between the act of launching the view and subsequent actions. A number of other activities could happen either by that user or others in between and it is not practical or beneficial to lock the entire table of data the view shows waiting until the user has moved on.
Because a query across a large data set means that it potentially affects others trying to interact with any of that data, being able to specify that no lock is required can have a significant benefit on system scalability.
When making a query of the platform through the SDK it can be valuable to specify that nolock can be used. It indicates that you recognize this query doesn’t need to take a read lock in the database. It’s especially useful for queries where:
· There’s a broad scope of data
· Highly contested resources are queried
· Serialization isn’t important
Nolock shouldn’t be used if a later action depends on no change to the results, such as in the auto number locking example earlier.
An example scenario where it can be useful is determining if an email is related to an existing case. Blocking other users from creating new cases to ensure there is no possibility of a case being generated that the email could link to would not be a beneficial level of consistency control.
Instead, making a reasonable effort to query for related cases and attach the email to an existing case or create a new one, while still allowing other cases to be generated, is more appropriate. Particularly, as there is no inherent link in the timing between these two actions, the email could just as easily have come in a few seconds earlier and no link would have been detected.
Whether nolock hints are valid for a particular scenario would typically be based on a judgment of the likelihood and impact of conflicts occurring and the business implication of not ensuring consistency of actions between a retrieve and subsequent actions. Where no business impact would occur from avoiding locking, using nolocks would be a valuable optimization choice. If there is a potential business impact, the consequence of this can be weighed against the performance and scalability benefits of avoiding locking.
[bookmark: _Toc418168008]Consider order of locks
Another approach that can be useful in reducing the impact of blocking, and particularly in avoiding deadlocking, is having a consistent approach to the ordering of locks in an implementation.
A simple and common example is when updating or interacting with groups of users. If you have requests that update related users (such as adding members to teams or updating all participants in an activity), not specifying an order can mean that if two concurrent activities try to update the same users, you can end up with the following behavior, which results in a deadlock:
· Transaction A tries to update User X and then User Y
· Transaction B tries to update User Y and then User X
Because both requests start together, Transaction A is able to get a lock on User X and Transaction B is able to get a lock on User Y, but as soon as each of them try to get a lock on the other user they block and then deadlock.

[image:]

Simply by ordering the resources you access in a consistent way you can prevent many deadlock situations. The ordering mechanism is often not important as long as it is consistent and can be done as efficiently as possible. For example, ordering users by name or even by GUID can at least ensure a level of consistency that avoids deadlocks.
In a scenario using this approach, Transaction A would get User X, but Transaction B would also try now to get User X rather than User Y first. While that means Transaction B blocks until Transaction A completes, this scenario avoids the deadlock and is completed successfully.

[image:]

In more complex and efficient scenarios, it may be that you lock least commonly referenced users first and more frequently referenced users last, which leads to the next design pattern.
[bookmark: _Toc418168009]Hold contentious locks for shortest period
There are scenarios, such as the auto numbering approach, where there is no way around the fact that there is a heavily contested resource that needs to be locked. In that case, the blocking problem can’t be completely avoided, but can be minimized.
When you have heavily contested resources, a good design is to not include the interaction with that resource at the functionally logical point in the process, but move the interaction with it to as close to the end of the transaction as possible.
With this approach, although there will still be some blocking on this resource, it reduces the amount of time that resource is locked, and therefore decreases the likelihood and time in which other requests are blocked while waiting for the resource.

[image:]

[bookmark: _Toc418168010]Reduce length of transactions
In a similar way, a lock only becomes a blocking issue if two processes need access to the same resource at the same time. The shorter the transaction that holds a lock, the less likely that two processes, even if they access the same resource, will need it at exactly the same time and cause a collision. The less time the transactions are held, the less likely blocking will become a problem.
In the following example, the same locks are taken but other processing within the transaction means that the overall length of the transaction is extended, leading to overlapping requests for the same resources. This means that blocking occurs and each request is slower overall.

[image:]

By shortening the overall length of the transaction, the first transaction completes and releases its locks before the second request even starts, meaning there is no blocking and both transactions complete efficiently.
Other activities within a request that extend the life of a transaction can increase the chance of blocking, particularly when there are multiple overlapping requests, and can lead to a significantly slower system.

[image:]

There are a number of ways that the transaction length can be reduced.
[bookmark: _Toc418168011]Optimize requests
Each transaction is made up of a series of database requests. If each request is made as efficiently as possible, this reduces the overall length of a transaction and reduces the likelihood of collision.
Review each query you make to determine whether:
· Your query only asks for what it needs, for example, columns, records, or entity types.
· This maximizes the chance that an index can be used to efficiently service the query
· It reduces the number of tables and resources that need to be accessed, reducing the overhead on other resources in the database server and reducing the query time
· It avoids potential blocking on resources that you don’t need, particularly where a join to another table is asked for but could be avoided or is unnecessary
· An index is in place to assist the query, you are querying in an efficient way, and an index seek rather than scan is taking place
It’s worth noting that introducing an index doesn’t avoid locking on create/update of records in the underlying table. The entries in the indexes are also locked when the related record is updated as the index itself is subject to change. The existence of indexes doesn’t avoid this problem completely.
In the following example, the retrieval of related cases isn’t optimized and adds to the overall transaction length, introducing blocking between threads.

[image:]

By optimizing the query, there’s less time spent performing it, and the chance of collision is lower, thereby reducing blocking.
[image:]

Making sure that the database server can process your query as efficiently as possible can significantly decrease the overall time of your transactions and reduce the potential for blocking.
[bookmark: _Toc418168012]Reduce chain of events
As was shown in earlier examples, the consequences of long chains of related events can have a material impact on the overall transaction time and therefore the potential for blocking arises. This is particularly the case when triggering synchronous plug-ins and workflows, which then trigger other actions, and they in turn trigger further synchronous plug-ins and workflows.
Carefully reviewing and designing an implementation to avoid long chains of events occurring synchronously can be beneficial in reducing the overall length of a transaction. This allows any locks that are taken to be released more quickly and reduce the potential for blocking.
It also reduces the likelihood of secondary locks becoming a major concern. In the auto numbering example on account creation, the primary issue initially is access to the auto numbering table, but when many different actions are performed in one sequence, a secondary blockage, such as updates to a related user record, may start to surface also. Once multiple contested resources are involved, avoiding blocking becomes even harder.
Considering whether some activities need to be synchronous or asynchronous can mean the same activities are achieved but have less initial impact. Particularly for longer running actions or those depending on heavily contested resources, separating them from the main transaction by performing them in an asynchronous action can have significant benefits. This approach will not work if the action needs to complete or fail with the broader platform step, such as updating a police crime report with the next auto number value ensuring a continuous, sequential number scheme is maintained. In those scenarios other approaches to minimize the impact should be taken.
As the following example shows, simply by moving some actions out to an asynchronous process, which means the actions are performed outside of the platform transaction, can mean that the length of the transaction is shorter and the potential for concurrent processing increases.
[image:]

[image:]

[bookmark: _Toc418168013]Avoid multiple updates to the same record
When designing multiple layers of functional activity, while it is good practice to break down the needed actions to logical and easily followed flows of activity, in many cases this would lead to multiple, separate updates to the same record.
In the case handling scenario, first updating a case with a default owner based on the customer it is raised against and then later having a separate process to automatically send communications to that customer and update the last contact date against the case is a perfectly logical thing to do functionally.
The challenge, however, is that this means there are multiple requests to Dynamics CRM to update the same record, which has a number of implications:
· Each request is a separate platform update, adding overall load to the Dynamics CRM server and adding time to the overall transaction length, increasing the chance of blocking.
· It also means that the case record will be locked from the first action taken on that case, meaning that the lock is held throughout the rest of the transaction. If the case is accessed by multiple parallel processes, that could cause blocking of other activities.
Consolidating updates to the same record to a single update step, and later in the transaction, can have a significant benefit to overall scalability, particularly if the record is heavily contested or accessed by multiple people quickly after creation, for example, as with a case.
Deciding whether to consolidate updates to the same record to a single process would be based on balancing the complexity of implementation against the potential for conflict that separate updates could introduce. But for high volume systems, this can be very beneficial for highly contested resources.

[bookmark: _Toc418168014]Only update things you need to
While it is important not to reduce the benefit of a Dynamics CRM system by excluding activities that would be beneficial, often requests are made to include customizations that add little business value but drive real technical complexity.
If every time we create a task we also update the user record with the number of tasks they currently have allocated, that could introduce a secondary level of blocking as the user record would also now be heavily contended. It would add another resource that each request may need to block and wait for, despite not necessarily being critical to the action. In that example, consider carefully whether storing the count of tasks against the user is important or if the count can be calculated on demand or stored elsewhere such as using hierarchy and rollup field capabilities in Dynamics CRM natively.

[image:]

As will be shown later, updating system user records can have negative consequences from a scalability perspective.
[bookmark: _Toc418168015]Multiple triggers on same event
Triggering multiple actions on the same event can result in a greater chance of collision as by the nature of the requests those actions are likely to interact with the same related objects or parent object.
[image:]
This is a pattern that should be carefully considered or avoided as it is very easy to overlook conflicts, particularly when different people implement the different processes.
[bookmark: _Toc418168016]When to use different types of customization
Each type of customization has different implications for use. The following table highlights some common patterns, when each should be considered and used, and when it isn’t appropriate for use.
Often a compromise between different behaviors may need to be considered so this gives guidance of some of the common characteristics and scenarios to consider but each scenario needs to be evaluated and the right approach chosen based on all the relevant factors.

	Pre/ post stage

	Sync/ async
	Type of customization
	When to use
	When not to use

	Pre Validation
	Sync
	Workflow/ Plug-in
	Short term validation of input values
	Long running actions
When creating related items that should be rolled back if later steps fail

	Pre Operation
	Sync
	Workflow/ Plug-in
	Short term validation of input values
When creating related items that should be rolled back as part of platform step failure
	Long running actions
When creating an item and the resulting GUID will need to be stored against the item the platform step will create/update

	Post Operation
	Sync
	Workflow/ Plug-in
	Short running actions that naturally follow the platform step and need to be rolled back if later steps fail, for example, creation of a task for the owner of a newly created account
Creation of related items that need the GUID of the created item and that should roll back the platform step in the event of failure
	Long running actions
Where failure should not affect the completion of the platform pipeline step

	Not in event pipeline

	Async
	Workflow/ Plug-in
	Medium length actions that would impact on the user experience
Actions that cannot be rolled back anyway in the event of failure
Actions that should not force the rollback of the platform step in the event of failure
	Very long running actions
These shouldn’t be managed in Dynamics CRM
Very low cost actions. The overhead of generating async behavior for very low cost actions may be prohibitive; where possible do these synchronously and avoid the overhead of async processing

	N/A
Takes context of where it is called from
	
	Custom Actions
	Combinations of actions launched from an external source, for example, from a web resource
	When always triggered in response to a platform event, use plug-in/workflow in those cases

[bookmark: _Toc418168017]Plug-ins/workflows aren’t batch processing mechanisms
Long running or volume actions aren’t intended to be run from plug-ins or workflows. Dynamics CRM isn’t intended to be a compute platform and especially isn’t intended as the controller to drive big groups of unrelated updates.
If you have a need to do that, offload and run from a separate service, such as Azure worker role in Dynamics CRM Online or a Windows Service for on-premises deployments.
[bookmark: _Toc418168018]Setting up security
A very common escalation area is scalability of setting up security. This is a costly operation, so when done in volume can always cause challenges if not understood and carefully considered.

[bookmark: _Toc418168019]Diagram related actions
An activity that is very beneficial as a preventative measure, as well as a tool for diagnosing blocking problems, is to diagram related actions triggered in the Dynamics CRM platform. When doing this it helps to highlight both intentional and unintentional dependencies and triggers in the system. If you aren’t able to do this for your solution, you might not have a clear picture of what your implementation actually does. Creating such a diagram can expose unintended consequences and is good practice at any time in an implementation.
The following example highlights how initially two processes work perfectly well together but in ongoing maintenance the addition of a new step to create a task can create an unintended loop. Using this documentation technique can highlight this at the design stage and avoid this affecting the system.
[image:]

[bookmark: _Toc418168020]Isolation modes
Another approach often used to address blocking problems is to use a more optimistic isolation mode within SQL Server. From the outside, there are limitations on how effective this can be as it is only possible to apply this at the entire database level.
While this was previously very beneficial in Dynamics CRM deployments, enhancements at a platform level have significantly reduced the benefit this will bring. Optimizations such as using nolock on view queries, and explicitly specifying isolation levels on individual platform queries, have meant that the benefit from applying isolation levels at the database level is reduced. In the past the benefit outweighed the potential harm of allowing more optimistic concurrency. As the benefit has reduced the relative impact of optimistic concurrency, allowing blocking scenarios to occur has increased. Optimistic isolation modes can also lead to increased tempdb usage in the database, which can introduce other challenges.
Avoiding blocking by optimizing the design of the processes and requests being made is a much more effective and beneficial approach than using isolation modes. Using isolation modes can, however, bring short term relief in some scenarios while allowing time to address the underlying causes in the implementation.
[bookmark: _Toc418168021]Transaction diagnosis
After a design and implementation has been completed and a system has gone live, if unexpected errors or blocking occurs it’s valuable to be able to diagnose and determine what is causing those problems in order to inform design or implementation optimizations. In this section, we’ll describe some of the tools and approaches that you can use to do this.

[bookmark: _Toc418168022]Database analysis
SQL Server comes with a variety of tools that allow deep insight into what is happening at a database level to identify blocking:
· SQL Dynamic Management Views (DMVs)
· Queries that expose internal system health monitoring and analysis. Can be queried for:
· Long running locks
· Chains of locks
· Long running queries
· SQL Profiler:
· A tool that can be used to capture filtered requests to the database, giving an idea of what activity is occurring
· Particularly useful in this context to capture deadlocks and the queries that make up a transaction
[bookmark: _Toc418168023]Identify lock chains
Viewing lock chains is incredibly valuable to identify blocked resources, particularly long chains of queries blocked waiting for one or more resources.
There are many ways to query this information through the DMVs, but here’s an example SQL query that pulls back key information about the lock chains.

select rq.session_id, rq.blocking_session_id, rq.status, rq.start_time, rq.transaction_id, tlocks.resource_type, tlocks.resource_description, tlocks.request_mode, rq.wait_type, rq.wait_time, blockedsqltext.text AS BlockedRequest, blockingsqltext.text AS BlockingRequest
FROM sys.dm_exec_requests AS rq
JOIN sys.dm_tran_locks AS tlocks ON tlocks.request_session_id = rq.session_id
JOIN sys.dm_exec_connections AS blockconnection ON rq.blocking_session_id = blockconnection.session_id
CROSS APPLY sys.dm_exec_sql_text(rq.sql_handle) AS blockedsqltext
CROSS APPLY sys.dm_exec_sql_text(blockconnection.most_recent_sql_handle) AS blockingsqltext
	WHERE tlocks.request_status = 'WAIT' AND rq.wait_time > '100'

As an example, a subset of the kind of results this can return is shown below. It shows that session 4 is blocking sessions 8 and 17. What this can be used to determine is that something in the transaction held by session 4 is being requested by session 8. This is common and normal but where you start to get long wait times or long chains of blocked queries, then this is worth investigating. In the above example, we only show any locks waiting for more than 100ms to avoid highlighting normal behavior.
	Session Id
	Blocking Session Id
	Blocked SQL

	4
	
	Select * FROM ContactBase

	8
	4
	UPDATE AccountBase SET Name = “new name” WHERE GUID = ‘XXXXX’

	17
	8
	UPDATE AccountBase SET Type = “Customer” WHERE GUID = ‘XXXXX’

One commonly misunderstood element is that the DMVs, as queried here, show the last executed query for each session. In the case of the blocked queries, this is useful as the resource that is being waited for will be related to that last requested query and therefore be why the query is blocked.
But for the blocking query, the blocking resource may be completely unrelated to the last query executed. The other requests may be blocking a resource that was locked much earlier in the transaction by a query that was completed previously, so is not shown in this view.
It is possible to translate the WAIT resource to show the exact resource being blocked, and that can provide insight to the actual underlying problem.
[bookmark: _Toc418168024]Review transaction use from profile
Once a particular transaction has been established as the one causing the blocking, SQL Profiler can be useful to understand what else was performed as part of that transaction, and identify other queries or requests that may be causing the blocking. A good base pattern for capturing detailed SQL profile traces for Dynamics CRM is as follows:
· Template: TSQL
· Select the Events Selection Tab
· Deselect the following events
· Audit Login
· Audit Logout
· Existing Connection
· Select ‘Show All Events’
· Add the following events
· Errors and Warnings
· Blocked process report
· Locks
· Deadlock Graph
· Deselect ‘Show All Events’ to reduce the complexity of what is shown
· Select ‘Show All Columns’
· Add the following columns
· Duration
· Database Name
· Transaction Id
· Remove the following column
· BinaryData
· Deselect ‘Show All Columns’
· Select Column Filters
· Add ‘Database Name’ LIKE ‘%_MSCRM%’
· Add ‘TextData NOT LIKE ‘%sp_reset_connection’%
These will reduce the volume of activity that is shown
Be cautious, however, because on a high volume production system this would capture a lot of data and affect performance, which isn’t recommended. A more selective approach would need to be taken.
[bookmark: _Toc418168025]CRM analysis
There are a number of ways to determine what is happening if the problem occurs outside of the database layer. The first is analysis of plug-in performance. For plug-ins operating in the sandbox, plug-in statistics can be queried for within the application to give an indication of how often the plug-in is running, and statistics on how long it typically takes to run.

[image:]

When certain errors are occurring, using the server trace files to understand where related problems may be occurring in the platform can also be useful.
[bookmark: _Toc418168026]Summary

Slow requests

Deadlocks

Limited throughput

Generic SQL errors

Users see slow response times for the system in particular areas, for example, certain forms and queries

Intermittent errors/ slow performance

Certain actions respond with a platform error reporting a "Generic SQL Error"

This often translates at a platform layer to a SQL timeout

Platform errors reporting that a deadlock has occurred, which has forced the action to be terminated and rolled back

Particularly in batch load scenarios, this often exhibits in really slow throughput being achieved, much slower than should be possible

An important indicator of these behaviors is where the same action can be very fast or incredibly slow, and retrying it works much more quickly or avoids an error

Slow Requests

Complex queries

Blocking

Deadlocks

Parallel requests for same resources

Long running transactions

Low Throughput

Blocking

Long running transactions

Long running transactions

Timeouts

Complex queries

Blocking

Long running transactions

Blocking

Plug-in timeouts

SQL timeouts

Workflow limits

Plug-ins will time out after 2 minutes

Operates under a Fair Usage policy

Requests to SQL Server time out at 30 seconds to protect against long running requests

Provides protection within a particular organization and its private database

Long running actions shouldn't be performed in plug-ins. Protects the platform and the sandbox service and ultimately the user from poor user experience

No specific hard limits, but balance resource across organizations

Maximum concurrent connections

There is a platform default setting of a maximum connection pool limit of 100; connections from the Web Server connection pool in IIS to the database. Microsoft Dynamics CRM does not change this value

Have never seen a scenario where this should be increased. If you hit this, it is an indication of an error in the system; look at why so many connections are blocking

ExecuteMultiple

ExecuteMultiple is designed to assist with collections of messages being sent to Dynamics CRM from an external source

The actual limit experienced by a customer will first depend on the number of web servers that are available, but also on how requests are distributed across the web servers by the load balancer. While it may be possible to achieve higher than 2, it is safer to design for 2 if you are not in control of the infrastructure , such as in the online environment

The processing of large groups of these requests can tie up vital resources in CRM at the expense of more response critical requests by users, therefore this is limited to 2 concurrent ExecuteMultiple requests per organization

Also provides protection at a database server level against excessive use of shared resources such as processors/memory

Where demand is low, an organization can take full advantage of available capacity, but where demand is high, resources and throughput is shared

With multiple web servers, each with 100 concurrent connections to the database of typical <10ms, this suggests a throughput of >10k db requests for each web server. This should not be required and would hit other challenges well before that

Forms

Would think this would block lots of other activity

So typically does not lock other activities

Create

View

Performs a retrieve request through the platform

Takes a read lock on the record shown

Low impact on other uses

Update

Performs a create request through the platform

Often can trigger related actions in customization which can have an impact

Of itself has low impact on other activities, as new record, so nothing else blocking on it

Performs an update request through the platform

More likely to have conflicts, as an update lock will block anything else updating or reading that record. Also blocks anything taking a broad read lock on that table

Often also triggers other activities

But deliberately passes nolock hints to queries

Although poor query optimization can affect DB resource usage and possibly hit timeouts

Can potentially block locking queries to the whole table until it is complete

User Activity

Async Actions

Batch Loads

Overlapping Requests

Slow user response times

Unpredictable response times

Low throughput in batch processing

Locks/Blocks

Errors

Team setup

Always add users in the same order: avoid deadlocks

Only update users if they need to be updated: avoid invalidating users' caches unnecessarily

Owner v. access teams

If users' teams change regularly, be careful about using owner teams heavily; every time they change they invalidate the user’s cache in the web server

Ideally make changes when the user isn’t working, reduce impact, such as overnight

Cascading behavior

Don’t regularly update system user records unless something fundamental has changed as this forces the user cache to be reloaded and the security privileges to be recalculated, an expensive activity

Don’t use system user to record how many open activities the user has, for example

Lots of team memberships/ BUs

Consider carefully scenarios with lots of teams/BUs add to complexity of calculation

Careful updating of user records

Consider cascading sharing, for example, assignment

Locks/ transactions

Locks and transactions are essential to a healthy system

Platform constraints

Platform constraints often exhibit in the form of errors

They’re there to protect the platform and other activity from being affected

Design for transaction use

If implementations are designed with transaction behavior in mind, this can lead to much greater scalability and improved user performance

But when used incorrectly, can lead to problems

But rarely is the constraint the cause of the problem

78	Scalable Customizations in Dynamics CRM 2015	May 2013
image2.png

image3.png

image4.png

image5.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create Account

image6.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountPre Plug InEvent PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountPost Plug In

image7.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountPre Plug InPost Plug In

image8.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountPre Plug In

image9.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountPost Plug InEvent PipelinePre Validate Plug InParticipate in TransactionEvent Platform Step e.g. Create AccountSDK RequestPre Validate Plug InOutside of Pipeline Transaction

image10.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountAsync Plug InInitiate TransactionCommit TransactionInitiate TransactionCommit Transaction

Microsoft_Visio_Drawing11111111.vsdx
Event Pipeline
DB Transaction
Initiate Transaction
Commit Transaction
Event Platform Step e.g. Create Account
Async Plug In
Initiate Transaction
Commit Transaction
Initiate Transaction
Commit Transaction

image11.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountSync Workflow

Microsoft_Visio_Drawing22222222.vsdx
Event Pipeline
DB Transaction
Initiate Transaction
Commit Transaction
Event Platform Step e.g. Create Account
Sync Workflow

image12.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountAsync WorkflowInitiate TransactionCommit TransactionInitiate TransactionCommit Transaction

Microsoft_Visio_Drawing33333333.vsdx
Event Pipeline
DB Transaction
Initiate Transaction
Commit Transaction
Event Platform Step e.g. Create Account
Async Workflow
Initiate Transaction
Commit Transaction
Initiate Transaction
Commit Transaction

image13.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountSync WorkflowCustom Workflow Activity Async WorkflowCustom Workflow Activity

image14.emf
Event PipelineDB TransactionInitiate TransactionCommit TransactionEvent Platform Step e.g. Create AccountAsync Plug InInitiate TransactionCommit TransactionCustom Action initiated by Async Plug In

image15.WMF

image16.png

image17.emf
Event Pipeline1DB TransactionInitiate TransactionCreate Account Platform StepCreate Account (outside txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g. 7)Update Auto Number (e.g. 8)

Microsoft_Visio_Drawing44444444.vsdx
Event Pipeline1
DB Transaction
Initiate Transaction
Create Account Platform Step
Create Account (outside txn): Auto number Pre Plug In
Commit Transaction
Auto Number Table
Event Pipeline2
Read Latest Auto Number (e.g. 7)
Update Auto Number (e.g. 8)

image18.emf
Event Pipeline1DB TransactionInitiate TransactionCreate Account Platform StepCreate Account (outside txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Initiate TransactionCommit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 7)Update Auto Number (e.g. 8)

image19.emf
Event Pipeline1DB TransactionInitiate TransactionCreate Account Platform StepCreate Account (inside txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g. 7)Update Auto Number (e.g. 8)Auto Number Lock

Microsoft_Visio_Drawing55555555.vsdx
Event Pipeline1
DB Transaction
Initiate Transaction
Create Account Platform Step
Create Account (inside txn): Auto number Pre Plug In
Commit Transaction
Auto Number Table
Event Pipeline2
Read Latest Auto Number (e.g. 7)
Update Auto Number (e.g. 8)
Auto Number Lock

image20.emf
Event Pipeline1DB TxnInitiate TransactionCreate Account Platform StepCreate Account (in txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Initiate TransactionCommit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 7)Update Auto Number (e.g. 8)Also takes a read lockDB TxnCreate Account (In txn): Auto number Pre Plug InAuto Number Update LockAuto Number Read LockUpdate Lock blocking waiting for shared read lockBut 2nd read lock won͛t be released until first transaction either times out, errors or complete͙..deadlock

Microsoft_Visio_Drawing66666666.vsdx
Event Pipeline1
DB Txn
Initiate Transaction
Create Account Platform Step
Create Account (in txn): Auto number Pre Plug In
Commit Transaction
Auto Number Table
Event Pipeline2
Read Latest Auto Number (e.g.7)
Update Auto Number (e.g. 8)
Initiate Transaction
Commit Transaction
Create Account Platform Step
Read Latest Auto Number (e.g. 7)
Update Auto Number (e.g. 8)
Also takes a read lock
DB Txn
Create Account (In txn): Auto number Pre Plug In
Auto Number Update Lock
Auto Number Read Lock
Update Lock blocking waiting for shared read lock
But 2nd read lock won’t be released until first transaction either times out, errors or complete…..
deadlock

image21.emf
Event Pipeline1DB TxnInitiate TransactionCreate Account Platform StepCreate Account (in txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Initiate TransactionCommit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 7)Update Auto Number (e.g. 8)Also takes a read lockAuto Number LockDB TxnCreate Account (In txn): Auto number Pre Plug InAuto Number Update LockAuto Number Read Lock

Microsoft_Visio_Drawing77777777.vsdx
Event Pipeline1
DB Txn
Initiate Transaction
Create Account Platform Step
Create Account (in txn): Auto number Pre Plug In
Commit Transaction
Auto Number Table
Event Pipeline2
Read Latest Auto Number (e.g.7)
Update Auto Number (e.g. 8)
Initiate Transaction
Commit Transaction
Create Account Platform Step
Read Latest Auto Number (e.g. 7)
Update Auto Number (e.g. 8)
Also takes a read lock
Auto Number Lock
DB Txn
Create Account (In txn): Auto number Pre Plug In
Auto Number Update Lock
Auto Number Read Lock

image22.emf
Event Pipeline1DB TxnInitiate TransactionCreate Account Platform StepCreate Account (in txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Initiate TransactionCommit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 8)Update Auto Number (e.g. 9)Auto Number Write LockAuto Number Write LockDB TxnCreate Account (In txn): Auto number Pre Plug InUpdate Auto Number (placeholder update)Update Auto Number (placeholder update)

image23.emf
Event Pipeline1DB TxnInitiate TransactionCreate Account Platform StepCreate Account (in txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Initiate TransactionCommit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 8)Update Auto Number (e.g. 9)Auto Number Write LockAuto Number Write LockDB TxnCreate Account (In txn): Auto number Pre Plug InUpdate Auto Number (placeholder update)Update Auto Number (placeholder update)Post Plug In

image24.emf
Event Pipeline1DB TxnInitiate TransactionCreate Account Platform StepCreate Account (in txn): Auto number Pre Plug InCommit TransactionAuto Number TableEvent Pipeline2Read Latest Auto Number (e.g.7)Update Auto Number (e.g. 8)Commit TransactionCreate Account Platform StepRead Latest Auto Number (e.g. 8)Update Auto Number (e.g. 9)Auto Number Write LockAuto Number Write LockDB TxnCreate Account (In txn): Auto number Pre Plug InUpdate Auto Number (placeholder update)Update Auto Number (placeholder update)Update Account with auto number valueUpdate Account with auto number valueInitiate Transaction

Microsoft_Visio_Drawing88888888.vsdx
Event Pipeline1
DB Txn
Initiate Transaction
Create Account Platform Step
Create Account (in txn): Auto number Pre Plug In
Commit Transaction
Auto Number Table
Event Pipeline2
Read Latest Auto Number (e.g.7)
Update Auto Number (e.g. 8)
Commit Transaction
Create Account Platform Step
Read Latest Auto Number (e.g. 8)
Update Auto Number (e.g. 9)
Auto Number Write Lock
Auto Number Write Lock
DB Txn
Create Account (In txn): Auto number Pre Plug In
Update Auto Number (placeholder update)
Update Auto Number (placeholder update)
Update Account with auto number value
Update Account with auto number value
Initiate Transaction

image25.png

image26.emf
Event PipelineDB TransactionInitiate TransactionCreate Account Platform StepCreate Account: Pre Plug InCreate Account Post Plug In: (Create Email through SDK)Commit TransactionCreate Email Platform Step Create Email: Pre Plug InCreate Email Post Plug InCreate Email Sync Workflow

image27.WMF

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image1.png

image39.emf
Account: Post Create Create/Update AccountValidate UpdatesActivity: Post Create Create/ Update ActivityUpdate Parent AccountAccount: Post Create Create/Update AccountValidate UpdatesActivity: Post Create Create/ Update ActivityUpdate Parent AccountCreate Task

image40.png

