

SQL Server
to SQL
Server PDW
Migration Guide
(AU3)

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3)

Contents

4 Summary Statement

4 Introduction

 4 SQL Server Family of Products

 6 Differences between SMP and MPP

 8 PDW Software Architecture

 10 PDW Community

10 Migration Planning

 11 Determine Candidates for Migration

 11 Migration Considerations

 12 Migration Approaches

13 SQL Server to PDW Migration

 13 Main Migration Steps

 13 PDW Migration Advisor

 14 APS Migration Utility

 14 Table Geometry

 20 Optimization within PDW

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3)

29 Converting Database Schema Objects

 29 Type Mapping

 36 Syntax Differences

51 Conclusion

51 For More Information

51 Feedback

52 Appendix

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3)

© 2014 Microsoft Corporation. All rights

reserved. This document is provided “as-is.”

Information and views expressed in this

document, including URL and other Internet

Web site references, may change without

notice. You bear the risk of using it. This

document does not provide you with any legal

rights to any intellectual property in any

Microsoft product. You may copy and use this

document for your internal, reference

purposes. You may modify this document for

your internal, reference purposes.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 4

In this migration guide you will learn the differences between the

SQL Server and Parallel Data Warehouse database platforms, which

runs on the Analytics Platform System appliance, and the steps

necessary to convert a SQL Server database to Parallel Data

Warehouse.

This guide has been updated to reflect the T-SQL improvements

contained within Version 2, Appliance Update 3 (AU3)

Migrating a data warehouse application from Microsoft® SQL Server®

SMP to the Microsoft® SQL Server® Parallel Data Warehouse (PDW)

region within the Microsoft Analytics Platform System (APS) appliance,

provides many benefits, including improved query performance,

scalability and the simplest integration to Hadoop.

This white paper explores the remediation activities and provides

guidance to overcome technical differences between the two database

platforms in order to simplify migration projects. It describes the

implementation differences of database objects, SQL dialects, and

procedural code between the two platforms.

Microsoft offers a wide range of SQL Server products to accommodate

the different business needs and technical requirements to provide a

robust and scalable enterprise-wide solution.

Compact Edition

Microsoft SQL Server Compact 4.0 is a compact database ideal for

embedding in desktop and web applications. SQL Server Compact 4.0

gives developers a common programming model with other SQL Server

editions for developing both native and managed applications. SQL

Server Compact provides relational database functionality in a small

footprint.

Express Edition

SQL Server 2014 Express Edition is available for free from Microsoft and

provides a powerful database engine ideal for embedded applications or

for redistribution with other solutions. Independent software vendors

use it to build desktop and data-driven applications. If you need more

advanced database features and support for greater than 10 GB

databases, SQL Server Express is fully compatible with other editions of

SQL Server can be seamlessly upgraded to enterprise versions of SQL

Summary
Statement

Introduction

SQL Server
Family of
Products

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 5

Server without requiring remediation to overcome changes in

functionality.

Standard Edition

SQL Server 2014 Standard edition is a robust data management and

business intelligence database for departments and small workgroups to

support a wide variety of applications. SQL Server Standard Edition also

supports common development tools for on premise and cloud.

Enabling effective database management with minimal IT resources. SQL

Server Standard Edition is compatible with other editions.

Web Edition

SQL Server 2014 Web edition is a low total-cost-of-ownership option for

Web hosters and Web VAPs to provide scalability, affordability, and

manageability capabilities for small to large scale Web properties.

Business Intelligence Edition

SQL Server 2014 Business Intelligence edition delivers a comprehensive

platform empowering organizations to build and deploy secure, scalable

and manageable BI solutions. It offers exciting functionality such as

browser based data exploration and visualization; powerful data mash-

up capabilities, and enhanced integration management.

Enterprise Edition

SQL Server 2014 Enterprise edition delivers comprehensive high-end

datacenter capabilities with blazing-fast performance, unlimited

virtualization, and end-to-end business intelligence. Enabling high

service levels for mission-critical workloads and end user access to data

insights.

Parallel Data Warehouse

While the other versions of SQL Server mentioned here have a

symmetric multi-processing (SMP) architecture, SQL Server Parallel Data

Warehouse has a massively parallel processing (MPP) architecture, in the

form of a data warehousing appliance, designed and built for to manage

high volumes of relational data (with up to 100x performance gains) and

providing the simplest integration to Hadoop. This addition of SQL

Server only runs on the Microsoft Analytics Platform System appliance;

available from HP, Dell and Quanta.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 6

As data volumes grow and the number of users increase, we find the

traditional architecture of running your data warehouse on a single SMP

server insufficient to meet the business requirements. To overcome

these limitations and scale and perform beyond your existing

deployment, Parallel Data Warehouse brings Massively Parallel

Processing (MPP) to the world of SQL Server. Essentially parallelizing and

distributing the processing across multiple SMP compute nodes. SQL

Server Parallel Data Warehouse is only available as part of Microsoft’s

Analytics Platform System (APS) appliance.

Before diving into the PDW architecture, let us first understand the

differences between the architectures mentioned above.

Symmetric Multi-Processing (SMP)

Symmetric Multi-Processing (SMP) is the primary parallel architecture

employed in servers. An SMP architecture is a tightly coupled

multiprocessor system, where processors share a single copy of the

operating system (OS) and resources that often include a common bus,

memory and an I/O system.

Think of this as a typical single server, multi-core with locally attached

storage, running the Microsoft Windows OS.

Massively Parallel Processing (MPP)

Massively Parallel Processing (MPP) is the coordinated processing of a

single task by multiple processers, each working on a different part of

the task. With each processor using its own operating system (OS) and

memory. MPP processors communicate between each other using some

form of messaging interface via an “interconnect”. The setup for MPP is

more complicated than SMP and one approach to simplify this while

providing equal amounts of resources between processors is the

“Shared-Nothing” architecture. This approach is the one Parallel Data

Warehouse is based upon.

Shared Nothing Architecture

Differences
between
SMP and
MPP

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 7

The term shared nothing architecture was coined by Michael

Stonebraker (1986) to describe a multiprocessor database management

system in which neither memory nor disk storage is shared among the

processors.

For a database which follows the shared-nothing architecture, each

processor has its own set of disks. Data is “horizontally partitioned”

across nodes, such that each node has a subset of the rows from each

table in the database. Each node is then responsible for processing only

the rows on its own disks. Such architectures are especially well suited to

data warehouse workloads, where large fact tables can be distributed

across the nodes.

In addition, every node maintains its own lock table and buffer pool,

eliminating the need for complicated locking and software or hardware

consistency mechanisms. Because shared nothing does not typically

have a severe bus or resource contention it can be made to scale to

hundreds or even thousands of machines.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 8

Admin Console

 The Admin Console is a web application that visualises the

appliance state, health, and performance information.

MPP Engine

The MPP Engine is the brain of the SQL Server Parallel Data Warehouse

(PDW) and delivers the Massively Parallel Processing (MPP) capabilities

by doing the following:

 Generates the parallel query execution plan and coordinates the

parallel query execution across the compute nodes.

 Stores and coordinates metadata and configuration data for all of

the databases.

 Manages SQL Server PDW database authentication and

authorization.

 Tracks hardware and software status.

PDW
Software
Architecture

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 9

Data Movement Service (DMS)

 Transfers data between the Computer nodes and the Control node.

 Processes query operations that require transferring data among

the nodes.

 Improves query performance by optimizing data transfer speeds.

 Data is loaded in parallel directly from the loading server to the

Compute nodes via the DMS.

 DMS transfers data from each Compute node directly to the

backup server.

 Using PolyBase, DMS transfers data to and from an external

Hadoop cluster, or the HDInsight Region on the appliance

SQL Server Databases

 Each Compute node runs an instance of SQL Server to process

queries and manage user data.

 The Shell database manages the metadata for all distributed user

databases.

 TempDB contains the metadata for all user temporary tables across

the appliance.

 Master is the master table for SQL Server on the Control node

Configuration Tool

 The Configuration Tool (dwconfig.exe) is used by appliance

administrators to configure the Analytics Platform System.

Domain Controller

 Performs authentication among the Analytics Platform System

nodes, and manages the authentication of SQL Server PDW

Windows Authentication logins

 Windows Domain Name Service (DNS) resolves domain names to

IP addresses for the Analytics Platform System appliance.

Windows Deployment Service

 Windows Deployment Service (WDS) deploys the Windows Server

operating system onto the appliance. It is deployed on every host

and virtual machine across the appliance.

 The DHCP service creates IP addresses so that the hosts within the

appliance domain can join the appliance network without having a

pre-configured IP address.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 10

Virtual Machine Manager

 Analytics Platform System uses virtualization to achieve high

availability. The Virtual Machine Manager hosts System Center to

deploy the operating system on the physical hosts.

 Windows Server Update Services (WSUS) provides the ability to

apply or remove Windows Updates across all of the hosts and

virtual machines.

Microsoft APS Documentation and Client Tools

The Microsoft Analytics Platform System product documentation and

client tools can be obtained via the following locations:

 Microsoft Download Center

http://www.microsoft.com/en-us/download/details.aspx?id=45294

Microsoft APS Instructor-Led Training

A number of different Microsoft Partners offer instructor-led training

about Microsoft APS. Contact your Microsoft Account Manager to

obtain a list of these partners within your region.

An online course is available on the Microsoft Virtual Academy at:

http://www.microsoftvirtualacademy.com/training-courses/big-

data-with-the-microsoft-analytics-platform-system

Microsoft Premier Support for APS

Microsoft Premier Support for APS is a service offered by Microsoft

providing support through accredited appliance Microsoft Support

Engineers, remote managed upgrades and update assistance.

Before you begin the migration of an existing SQL Server data

warehouse to SQL Server Parallel Data Warehouse (PDW) it is

recommended that you first plan what it is you want to migrate and

make a decision on the migration approach.

PDW
Community

Migration
Planning

http://www.microsoft.com/en-us/download/details.aspx?id=45294
http://www.microsoftvirtualacademy.com/training-courses/big-data-with-the-microsoft-analytics-platform-system
http://www.microsoftvirtualacademy.com/training-courses/big-data-with-the-microsoft-analytics-platform-system

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 11

Migration of a data warehouse provides the perfect opportunity to

remove data, objects and processes which are no longer utilized.

Therefore the first step for migration planning is to identify and

determine which objects and processes you wish to migrate.

 Identify candidate databases for migration

 Primary Data Warehouses

 Primary Data Marts

 Staging Databases

 Archive Databases

 Identify candidate objects for migration

 Tables

 Views

 Stored Procedures

 Identify candidate data for migration

 Archive non-required data

After determining candidates for migration, you should also consider

the following areas and determine how you wish to manage them as

part of the migration. For example, you may be planning to migrate

multiple legacy SQL Server data marts onto a single SQL Server Parallel

Data Warehouse, doing so may increase the importance of the APS

appliance and therefore require an increase in availability and disaster

recovery.

 Mission Critical

 High-Availability & Disaster Recover

 Security & Data Encryption

 Database Design

 Number of Users & Concurrency

 Design Complexities (ELT/ETL, UDT’s, UDF’s, Physical Storage)

Determine
Candidates
for
Migration

Migration
Considerations

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 12

 Data Loads (Volume, Frequency, Latency)

 Capacity Planning (current and future storage requirements)

 Backup & Restore

There are many different options to migrating data and applications

from an existing SQL Server system to a SQL Server Parallel Data

Warehouse, each of which provides different costs and benefits.

The three most widely adopted migration approaches are:

 1:1 Migration – The existing data model and schema is moved

directly to the SQL Server PDW with little or no change to the

model. The benefits being the increasing performance, availability,

scalability and the decreasing cost of ownership (TCO) of the

platform. Sometimes referred to as Re-Hosting or the Forklift

approach.

 Redesign – The data model is redesigned and the application is re-

architected following the SQL Server PDW best practices. This can

help reduce overall complexity and enable the ability for the data

warehouse to be more flexible and answer any question at any

time.

 Evolution – The evolutionary approach is a combination of the

above two, allowing for the new target platform to be up and

running quickly and over time deliver increasing benefits and

capabilities by redesigning.

Migration
Approaches

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 13

Determining the overall goal and reason for migration will provide the

means to determine which of the 3 approaches is best suited.

Migration Drivers Migration Approach

Performance 1:1 Migration or Redesign or Evolution

Availability 1:1 Migration or Evolution

Scalability 1:1 Migration or Evolution

Single View of the Business Redesign or Evolution

Business Questions (Complexity) Redesign or Evolution

Cost of Ownership (TCO) 1:1 Migration

This section provides an overview of SQL Server to PDW migration. It

discusses main migration steps, PDW Migration Advisor, table geometry,

and optimization within PDW.

This white paper provides you guidance in migrating the objects and

highlights areas which are not supported within SQL Server PDW. To aid

with identifying the migration areas to focus on, you can make use of

the PDW Migration Advisor.

Once all objects have been migrated, the next step would be to migrate

any integration or ETL jobs.

The PDW Migration Advisor (PDWMA) is a tool that can be used to

inspect your Microsoft SQL Server database schemas in order to display

the changes that need to be made in order to migrate the database to

Microsoft SQL Server PDW.

SQL Server
to PDW
Migration

Main
Migration
Steps

PDW
Migration
Advisor

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 14

PDWMA is able to review the DDL and DML code structured and

perform a series of validation checks to determine compatibility with

PDW. This will significantly reduce the investigation efforts required in

migration scoping projects. This whitepaper provides guidance in order

to overcome technical issues that may be encountered in the database

migration project.

A representative from the Microsoft technical pre-sales team will be

happy to run the PDWMA for you – please connect with your Microsoft

representative to run this tool/free service.

The APS Migration Utility is a tool that can be used to automatically

migrate the Microsoft SQL Server database schemas and data, whilst

providing the ability to specifiy the table geometry during the migration

process.

A representative from the Microsoft Consulting Services will be happy to

run the APS Migration Utility for you – please connect with your

Microsoft representative.

As we learnt within the previous sections, SQL Server Parallel Data

Warehouse (PDW) is a Massively Parallel Processing (MPP) appliance

which follows the Shared Nothing Architecture. This means that we need

to distribute or spread the data across the compute nodes in order to

benefit from the storage and query processing of the MPP architecture.

SQL Server PDW provides two options to define how the data can be

partitioned, these are distributed and replicated tables.

Distributed Tables

A distributed table is a table in which all rows have been spread across

the SQL Server PDW Appliance compute nodes based upon a row hash

function. Each row of the table is placed on a single distribution,

assigned by a deterministic hash algorithm taking as input the value

contained within the defined distribution column.

The following diagram depicts how a row would typically be stored

within a distributed table.

APS
Migration
Utility

Table
Geometry

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 15

Each SQL Server PDW compute node has eight distributions and each

distribution is stored on its own set of disks, therefore ring-fencing the

I/O resources.

Distributed tables are what gives SQL Server PDW the ability to scale out

the processing of a query across multiple compute nodes.

Each distributed table has one column which is designated as the

distribution column. This is the column that SQL Server PDW uses to

assign a distributed table row to a distribution.

When selecting a distribution column there are performance

considerations, one of which is data skew. Skew occurs when the rows of

a distributed table are not spread uniformly across each distribution.

When a query relies on a distributed table which is skewed, even if a

smaller distribution completes quickly, you will still need to wait for the

queries to finish on the larger distributions. Therefore a parallel query

performs as slow as the slowest distribution, and so it is essential to

avoid data skew. Where data skew is unavoidable, PDW can endure 20 -

30% skew between the distributions with minimal impact to the queries.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 16

Replicated Tables

A replicated table is a table in which a complete duplicate of all data is

stored on each of the SQL Server PDW compute nodes. Replicating a

table onto each compute node provides an additional optimization by

removing the need to shuffle data between distributions before

performing a join operation. This can be a huge performance boost

when joining lots of smaller tables to a much larger tables, as would be

the case within a type dimension data model, i.e. distribute the fact table

on a high cardinality column, whilst replicating the dimensional tables.

The above diagram depicts how a row would be stored within a

replicated table. A replicated table is striped across all of the disks

assigned to each of the distributions within a compute node.

Because you are duplicating all data for each replicated table on each

compute node, you will require extra storage, equivalent to the size of a

single table multiplied by the number of compute nodes, therefore a

table containing 100MB of data on a PDW appliance with 10 compute

nodes will require 1GB of storage.

When loading new data, or updating existing data you will require far

more resources to complete the task, than if it were to be executed

against a distributed table. This is due to the fact that each operation

will need to be executed on each compute node. Therefore it is essential

that you take into account the extra overhead when performing ETL/ELT

style operations against a replicated table.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 17

The most frequently asked question about replicated tables would be

“what is the maximum size we should consider for a replicated table?”

We recommend that you keep the use of replicated tables to a small set

of data, generally less than 5GB in size. However there are scenarios

when you may want to consider much larger replicate tables. In which

case we would recommend you follow one of these approaches to

reduce the overall batch resource requirements.

 Maintain 2 versions of the same table, one distributed in which to

perform all of the ETL/ELT operations against, and the second

replicated for use by the BI presentation layer. Once all of the

ETL/ELT operations have completed against the distributed version

of the table, you would then execute a single CREATE TABLE AS

SELECT (CTAS) statement in which to rebuild a new version of the

final replicate table.

 Maintain 2 tables, both replicate tables. One “base” table persists

all data, minus the current week’s set of changes. The second

“delta” table persists the current week’s set of changes. A view is

created over the “base” and the “delta” replicate tables which

resolves the two sets of data into the final representation. A weekly

schedule is required, executing a CTAS statement based upon the

view to rebuild a new version of the “base” table, once complete

the “delta” table can be truncated.

The Design Rules

A small number of database design choices can have a big impact on

improving query performance. The following design rules will provide

you with an outline to what information you should look for when

making design decisions.

The key to achieving optimal performance using SQL Server Parallel

Data Warehouse (PDW) is to make full use of the Massively Parallel

Processing (MPP) architecture. You can achieve this by following two

golden rules which are:

DISTRIBUTION FIRST

What we mean by “Distribution First” is that you should always begin

with designing your data model to be distributed, as if you do not, you

will not be able to realize the benefits of the Massive Parallel Processing

(MPP) architecture. Therefore always begin with a distributed table.

Replicated tables should be viewed as an optimization technique, much

in the same way you would view indexing or partitioning.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 18

When designing your data model consider the following points:

 A single subject area within a data model should have a common

distribution column which is also part of the join condition

 De-normalization with a Clustered ColumnStore Index as a way to

overcome poor distribution column selection options.

MINIMIZE ALL MOVEMENT OF DATA

Data Movement comes in many forms such as:

 From physical disk to memory

 Redistribution of data between distributions as part of a SHUFFLE

MOVE operation

 Duplication of data between compute nodes as part of a

BROADCAST MOVE operation

We should attempt to minimize as much movement as possible to

achieve the best possible performance. This can be achieved by better

selection of distribution columns and optimization techniques.

Some data movement may be necessary to satisfy a query. It is worth

mentioning that the PDW engine and Data Movement Service (DMS)

does an excellent job of minimizing data movement operations using

predicate pushdown, local/global aggregation and table statistics. So it

is very important to keep PDW statistics up-to-date.

Distribution Column Selection Rules

Selecting a good distribution column is an important aspect to

maximizing the benefits of the Massive Parallel Processing (MPP)

architecture. This is possibly the most important design choice you will

make in SQL Server Parallel Data Warehouse (PDW).

The principal criteria you must consider when selecting a distribution

column for a table are the following:

 Access

 Distribution

 Volatility

The ideal distribution key is one that meets all three criteria. The reality

is that you are often faced with trading one off from the other.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 19

JOIN ACCESS - Select a distribution column that is also used within

query join conditions

Consider a distribution column that is also one of the join conditions

between two distributed tables within the queries being executed. This

will improve query performance by removing the need to redistribute

data via a SHUFFLE MOVE operation, making the query join execution

distribution local.

AGGREGATE ACCESS – Select a distribution column that is also

aggregation compatible

Consider a distribution column that is also commonly used within the

GROUP BY clause within the queries being executed. This will improve

query performance by removing the need to perform a two-step

aggregation and redistribute data via a SHUFFLE MOVE operation,

making the query GROUP BY operation execute distribution local.

DISTINCT ACCESS – Select a distribution column that is frequently used

in COUNT DISTINCT’s

Consider a distribution column that is commonly used within a COUNT

DISTINCT function. This will improve query performance by removing

the need to redistribute data via a SHUFFLE MOVE operation, making

the query COUNT DISTINCT function execute distribution local.

DATA DISTRIBUTION – Select a distribution column that provides an

even data distribution

Consider a distribution column that can provide an even number of rows

per distribution, therefore balancing the resource requirements. To

achieve this look for a distribution column that provides a large number

of distinct values, i.e. at least 10 times the number of table distributions.

The data distribution of a table is said to be skewed if one or more

distributions contain significantly more rows than others. Data skew is

the enemy of all Massively Parallel Processing (MPP) systems as it puts

the system into an unbalanced state which requires more overall

resources within one or more distributions. When selecting a distribution

column ensure that no single value represents a large percentage of

rows (including NULL’s). Unfortunately it is highly unlikely to be able to

eliminate all data skew, but when selecting a distribution column, always

remember, the greater the data skew, the greater the performance

impact.

VOLATILITY – Select a distribution column that rarely, if ever changes

value

PDW will not allow you to change the value of a distribution column for

a given row by using an UPDATE statement. This is due to the fact that

changing the value of a distribution column for a given row will almost

certainly mean the row will be moved to a different distribution.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 20

If you are required to change the value of a distribution column then

you will need to first delete the existing row and then insert the new

row. Alternatively you could use a CREATE TABLE AS SELECT (CTAS)

statement to rebuild the table or partition.

It is therefore recommended that you select a distribution column which

rarely requires the value to be modified.

SQL Server Parallel Data Warehouse (PDW) is a Massively Parallel

Processing (MPP) appliance which provides you with large amounts of

resources however these are still finite and overall query and

concurrency performance will benefit from optimization of your data

model using one or more of the following options.

Replicated Table

A replicated table is a table in which a complete duplicate of all data is

stored on each of the SQL Server PDW compute nodes. Replicating a

table can provide the ability for it to become distribution compatible

when joined to another table. This removes the need to perform data

movement via a SHUFFLE MOVE operation at the expense of data

storage and load performance.

The ideal candidate for replicating a table is one that is small in size, i.e.

less than 5GB, changes infrequently and has been proven to be

distribution incompatible. Before selecting to replicate a table, ensure

that you have exhausted all options for keeping the table distributed.

The dimensional model above depicts one fact table and four dimension

tables. Within this example the customer dimension is significantly larger

Optimization
within PDW

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 21

in size than all other dimensions and based upon this would benefit

remaining distributed. The “Customer ID” column provides good data

distribution (minimal data skew), is part of the join condition between

the fact table and the customer dimension creating a distribution

compatible join, and is a regular candidate to be within the GROUP BY

clause during aggregation. Therefore selecting “Customer ID” as the

distribution column would be a good candidate. All other dimensions

are small in size and to remove any need to redistribute the fact table

when performing a join, we have made them replicated. Therefore

eliminating all data movement when joining the fact table to any

dimension table(s).

Clustered Indexes

A Clustered Index physically orders the pages of the data in the table. If

the table is distributed, then the physical ordering of the data pages is

applied to each of the distributions individually. If the table is replicated,

then the physical ordering of the pages is applied to each of replicate

tables on each of the compute nodes.

All data pages within a clustered index table are linked to the next and

previous data pages in a doubly linked list to provide ordered scanning.

In other words, the records in the physical structure are sorted according

to the fields that correspond to the columns used in the index.

PDW clustered index tables are always defined as non-unique, therefore

each record will contain a 4-byte value (commonly known as an

“uniquifier”) added to each value in the index where duplicate values

exist.

You can only have one clustered index on a table, because the table

cannot be ordered in more than one direction.

The following diagram shows what a Clustered Index table might look

like for a table containing city names:

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 22

When defining a clustered index on a distributed table within PDW it is

not necessary to include the distribution column within the cluster key.

The distribution column can be defined to optimize the joins while the

clustered index can be defined based upon the most frequently used

columns as predicates or range operations.

Clustered indexes within PDW provides you with a way to optimize a

number of standard OLAP type operations, including the following:

PREDICATE QUERIES

Data within the table is clustered on value and an index tree constructed

for direct access to these data pages, therefore clustered indexes will

provide the minimal amount of I/O required in which to satisfy the

needs of a predicate query. Consider using a clustered index on

column(s) commonly used as a valued predicate.

RANGE QUERIES

All data within the table is clustered and ordered on value, which

provides an efficient method to retrieve data based upon a range query.

Therefore consider using a clustered index on column(s) commonly used

within a range predicate, for example where a given date is between two

dates.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 23

AGGREGATE QUERIES

All data within the table is clustered and ordered on value, which

removes the need for a sort to be performed as part of an aggregation

or a COUNT DISTINCT. Therefore consider using a clustered index on

column(s) commonly contained within the GROUP BY clause or COUNT

DISTINCT function.

Clustered Indexes should be selected over Non-Clustered Indexes when

queries commonly return large result sets.

Non-Clustered Indexes

Non-Clustered Indexes are fully independent of the underlying table and

up to 999 can be applied to both heap and clustered index tables. Unlike

Clustered Indexes, a Non-Clustered Index is completely separate from

the data, and on the index leaf page, there are pointers to the data

pages. The pointer from the index to a data row is known as a row

locator. The row locator is structured differently depending on whether

the underlying table is a heap table or a clustered index table.

The row locator for a heap table will contain a pointer to the actual data

page, plus the row number within the data page. If that row is updated

and a data page split is required (if the updated row requires additional

space), a forwarding pointer is left to point to the new data page and

row. Over time and frequent updates can cause poor performance of the

Non-Clustered Indexes, requiring maintenance via a rebuild of the

underlying table and indexes.

The row locator for a clustered index table is different as it will contain

the cluster key from the cluster index. To find a value, you first traverse

the non-clustered Index, returning the cluster key, which you then use to

traverse the clustered index to reach the actual data. The overhead to

performing this is minimal as long as you keep the clustering key

optimal. While scanning two indexes is more work than just having a

pointer to the physical data page location, overall it can be considered

better because minimal reorganization is required for any modification

of the values in the table. This benefit is only true if the cluster key rarely,

or never, changes.

The same reasons for selecting a clustered index are also true for a non-

clustered index with the additional rules that they should only be used

to optimize queries which return small result sets or when they could be

utilized for covering indexes, reducing the base table IO requirements

(However with the advent of Clustered ColumnStore Indexes this is less

relevant).

NOTE: Non-Clustered Indexes can contribute to fragmentation and

random IO, which goes against the sequential IO requirements of data

warehousing. It is therefore recommended that you always begin with

no Non-Clustered Indexes and add them only if it’s really necessary.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 24

Clustered ColumnStore Indexes

A Clustered ColumnStore Index uses a technology called xVelocity for

the storage, retrieval and management of data within a columnar data

format, which is known as the columnstore. Data is compressed, stored,

and managed as a collection of partial columns, which we call column

segments.

Some of the clustered columnstore index data is stored temporarily

within a rowstore table, known as a deltastore, until it is compressed and

moved into the columnstore. The clustered columnstore index operates

on both the columnstore and the deltastore, when returning the query

results.

KEY CHARACTERISTICS

A clustered columnstore index in SQL Server Parallel Data Warehouse

(PDW) has the following characteristics:

 Available in SQL Server PDW and above.

 Includes all columns in the table and is the method for storing the

entire table.

 Fully updateable.

 Can be partitioned.

 It is the only index on the table, therefore cannot be combined with

any other indexes.

 Uses columnstore compression which is not configurable.

 Does not physically store columns in a sorted order. Instead, it

stores data to improve compression and performance. Pre-sorting

of data can be achieved by creating the Clustered ColumnStore

Index table from a Clustered Index table

 SQL Server PDW moves the data to the correct location

(distribution, compute node) before adding it to the clustered

columnstore index.

 For a distributed table, there is one clustered columnstore index for

every partition of every distribution.

 For a replicated table, there is one clustered columnstore index for

every partition of the replicated table on every compute node.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 25

BENEFITS

SQL Server Parallel Data Warehouse (PDW) takes advantage of the

column based data layout to significantly improve compression rates

and query execution time.

 Columns often have similar data, which results in high compression

rates.

 Higher compression rates improve query performance by requiring

less total I/O resources and using a smaller in-memory footprint.

 A smaller in-memory footprint allows for SQL Server PDW to

perform more query and data operations in-memory.

 Queries often select only a few columns from a table, requiring less

total I/O resources.

 Columnstore allows for more advanced query execution to be

performed, by processing the columns within batches, which

reduces CPU usage.

KEY TERMS

The following are key terms and concepts that you will need to know in

order to better understand how to use clustered columnstore indexes.

 Row Group – is a group of rows that are compressed into

columnstore format at the same time. Each column in the row

group is compressed and stored separately on the physical media.

 Column Segment – a column segment is the basic storage unit for

a columnstore index. It is a group of column values that are

compressed and physically stored together on the physical media.

 ColumnStore – a columnstore is data that is logically organized as

a table with rows and columns, physically stored in a columnar data

format. The columns are divided into segments and stored as

compressed column segments.

 RowStore – a rowstore is data that is organized as rows and

columns, and then physically stored in a row based data format.

 DeltaStore – a deltastore is a rowstore table that holds rows until

the quantity is large enough to be moved into the columnstore.

When you perform a bulk load, most of the rows will go directly to

the columnstore without passing through the deltastore. Some

rows at the end of the bulk load might be too few in number to

meet the minimum size of a rowgroup. When this happens, the

final rows go to the deltastore instead of the columnstore.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 26

 Tuple Mover – a background process which automatically

compresses “CLOSED” Row Groups from the DeltaStore into

Column Segments and storing them in the ColumnStore.

Partitioning

Partitioning allows you to physically divide up tables and indexes

horizontally, so that a groups of data are mapped into individual

partitions. Even though the table has been physically divided, the

partitioned table is treated as a single logical entity when queries or

updates are performed on the data.

BENEFITS

Partitioning large tables within SQL Server Parallel Data Warehouse

(PDW) can have the following manageability and performance benefits.

 SQL Server PDW automatically manages the placement of data in

the proper partitions.

 A partitioned table and its indexes appear as a normal database

table with indexes, even though the table might have numerous

partitions.

 Partitioned tables support easier and faster data loading, aging,

and archiving. Using the sliding window approach and partition

switching.

 Application queries that are properly filtered on the partition

column can perform better by making use of partition elimination

and parallelism.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 27

 You can perform maintenance operation on partitions, efficiently

targeting a subset of data to defragment a clustered index or

rebuilding a clustered columnstore index.

SQL Server Parallel Data Warehouse (PDW) simplifies the creation of

partitioned tables and indexes as you are no longer need to create a

partition scheme and function. SQL Server PDW will automatically

generate these and ensure that data is spread across the physical disks

efficiently.

For distributed tables, table partitions determine how rows are grouped

and physically stored within each distribution. This means that data is

first moved to the correct distribution before determining which

partition the row will be physically stored.

For clustered columnstore indexes, every partition will contain their own

columnstore and deltastore. To achieve the best possible performance

and maximise compression, it is recommended that you ensure each

partition for each distribution is sized so that it contains more than 1

million rows.

Within SQL Server you are able to create a table with a constraint on the

partitioning column and then switch that table into a partition. Since

PDW does not support constraints, we do not support this type of

partition switching method, but rather would require the source table to

be partitioned with matching ranges.

Statistics Collection

SQL Server Parallel Data Warehouse (PDW) uses a cost based query

optimizer and statistics to generate query execution plans to improve

query performance. Up-to-date statistics ensures the most accurate

estimates when calculating the cost of data movement and query

operations.

SQL Server PDW stores two sets of statistics at different levels within the

appliance. One set exists at the control node and the other set exists on

each of the compute nodes.

COMPUTE NODE STATISTICS

SQL Server PDW stores statistics on each of the compute node, and uses

them to improve query performance for the queries which execute on

the compute nodes.

Statistics are objects that contain statistical information about the

distribution of values in one or more columns of a table. The cost based

query optimizer uses these statistics to estimate the cardinality, or

number of rows, in the query result. These cardinality estimates enable

the query optimizer to create a high-quality query execution plan.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 28

The query optimizer could use cardinality estimates to decide on

whether to select the index seek operator instead of the more resource-

intensive index scan operator, improving query performance.

Each compute node has the AUTO_CREATE_STATISTICS set to ON, which

causes the query optimizer to create statistics based upon a single

column that is referenced within the WHERE or ON clause of a query.

Multi-Column statistics are not automatically created.

CONTROL NODE STATISTICS

SQL Server PDW stores statistics on the control node, and uses them to

minimize the data movement in the distributed query execution plan.

When you create statistics on a distributed table, SQL Server PDW

creates a statistics object for each distribution table on each of the

compute nodes, and one statistics object on the control node. The

control node statistics object contains the result from aggregating the

statistics object created for each of the distributions.

When you create statistics on a replicated table, SQL Server PDW creates

a statistics object for each compute node, but since each compute node

will contain the same statistics, the control node will only copy one

statistics object from one compute node.

When you create statistics on an external table, SQL Server PDW will first

import the required data into PDW so that it can then compute the

statistics. The results are stored on the control node.

Statistics stored on the control node are not made available to client

applications. The DMVs report only statistics on the compute nodes and

so do not report statistics on the control node.

Collection of statistics can be performed based upon a default sample,

custom sample percentage, filter selection or a full table scan. Increasing

the amount of data sampled improves the accuracy of the cardinality

estimates at the expense of the amount of time required in which to

calculate the statistics.

Collection of Multi-Column statistics on all join columns within a

single join condition and all aggregate columns within a GROUP BY

clause will provide additional information for the optimizer to generate a

better execution plan, such a density vectors.

Always ensure that statistics do not go stale, by updating the statistics

automatically as part of the transformation schedule or a separate

maintenance schedule, depending on the volatility of the column or

columns.

As a minimum statistics should be created for each of the following:

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 29

 Distribution Column

 Partition Column

 Clustered Index Keys

 Non-Clustered Index Keys

 Join Columns

 Aggregate Columns

 Commonly used predicate columns

This section discusses migration issues that can be encountered when

converting schema objects from SQL server to PDW and how they can

be overcome.

Migrating SQL Server Data Types is relatively easy as most data types

are the same between SQL Server and PDW.

Equivalent Data Types

The following data types are the same between SQL Server and PDW.

binary, bit, char, date, datetime, datetime2,

datetimeoffset, decimal, float, int, bigint, money,

nchar, nvarchar, real, smalldatetime, smallint,

smallmoney, time, tinyint, varbinary, varchar

Data Types Not Supported

cursor, image, ntext, numeric, rowversion,

hierarchyid, table, text, timestamp, xml,

uniqueidentifier, Spatial Types, CLR data types

Data Type Migration Considerations and Mitigations

The following data types have differences or are not supported.

NUMERIC

Converting
Database
Schema
Objects

Type
Mapping

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 30

The Numeric data type is the same as the Decimal data type in SQL

server. In PDW the name “numeric” has been deprecated and PDW uses

decimal instead. The way to convert from numeric to decimal is to

change the definition name from numeric to decimal as the types are

functionally equivalent.

CREATE TABLE dbo.Purchases

(

 PurchaseOrderID int NOT NULL,

 Value Numeric(9)

);

Translates to:

CREATE TABLE dbo.Purchases

(

 PurchaseOrderID int NOT NULL,

 Value Decimal(9)

);

DATE AND TIME FORMATS

The Date and Time data types are treated the same way in SQL Server

and PDW. So data in PDW or SQL Server databases can be queried the

same way and follows the same rules as far as both storage and syntax.

However it’s possible that issues may arise when loading data. In many

countries the date and time formats are different from the default of

“ymd”. In those cases the format needs to be handled in order to avoid

loading errors via DWloader. DWloader is one of the ways to load data

into PDW from text files. Text files however do not contain any type

information and so it’s possible that the format may be miss interpreted

and cause errors forcing rows to be skipped (rejected) and logged

during data loads. Dwloader.exe has numerous parameters in order to

handle the type conversion into the appropriate format.

Example:

dwloader.exe –S MyPDW-SQLCTL01 -U mylogin -P 123jkl –

i file.txt -t "|" -r \r\n –D "dmy"

The date format in this case assumes that all the columns have the date

values ordered as day (d), month (m), year (y). It’s also possible that

formats differ between columns. In that case a format file will have to

be used that specifies the input format on a per column basis. The

format file can be specified with the –dt parameter.

dwloader.exe –S MyPDW-SQLCTL01 -U mylogin -P 123jkl –

i file.txt -t "|" -r \r\n –dt inputformatfile.txt

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 31

The contents of the inputformatfile.txt would look like this. Each line has

the name of the column and the format of the destination datetime data

type.

LastReceiptDate=ymd

ModifiedDate=mdy

When importing text data it’s also possible that due to errors in the

source data the date format for a specific column varies from row to row

and this can either lead to errors or loading incorrect data. There may

also be corruption errors in the input data that need to be detected. In

such cases dwloader.exe offers some options to detect and log the rows

that caused a load error. This would then allow bayou to remediate the

data and reload.

In these cases the following dwloader parameters are useful. The

complete list of dwloader parameters is available in the product books

online.

-rt { value | percentage }

Specifies whether the -reject_value in the -rv reject_value option

is a literal number of rows (value) or a rate of failure

(percentage). The default is value. The percentage option is a

real-time calculation that occurs at intervals according to the -rs

option. For example, if the Loader attempts to load 100 rows

and 25 fail and 75 succeed, then the failure rate is 25%.

-rv reject_value

Specifies the number or percentage of row rejections to allow

before halting the load. The -rt option determines if reject_value

refers to the number of rows or the percentage of rows. The

default reject_value is 0. When used with -rt value, the loader

stops the load when the rejected row count exceeds reject_value.

When use with -rt percentage, the loader computes the

percentage at intervals (-rs option). Therefore, the percentage of

failed rows can exceed reject_value.

-rs reject_sample_size

Used with the -rt percentage option to specify the incremental

percentage checks. For example, if reject_sample_size is 1000, the

Loader will calculate the percentage of failed rows after it has

attempted to load 1000 rows. It recalculates the percentage of

failed rows after it attempts to load each additional 1000 rows.

-R load_failure_file_name

If there are load failures, dwloader stores the row that failed to

load and the failure description the failure information in a file

named load_failure_file_name. If this file already exists, dwloader

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 32

will overwrite the existing file. load_failure_file_name is created

when the first failure occurs. If all rows load successfully,

load_failure_file_name is not created.

-e character_encoding

Specifies a character-encoding type for the data to be loaded

from the data file. Options are ASCII (default), UTF8, UTF16, or

UTF16BE, where UTF16 is little endian and UTF16BE is big endian.

These options are case insensitive.

-m

Use multi-transaction mode for the second phase of loading;

when loading data from the staging table into a distributed

table.

With –m, SQL Server PDW performs and commits loads in

parallel. This performs much faster than the default loading

mode, but is not transaction-safe.

Without –m, SQL Server PDW performs and commits loads

serially across the distributions within each Compute node, and

concurrently across the Compute nodes. This method is slower

than multi-transaction mode, but is transaction-safe.

-m is optional for append, reload, and upsert.

-m is required for fastappend.

-m cannot be used with replicated tables.

-m applies only to the second loading phase. It does not apply to

the first loading phase; loading data into the staging table.

There is no rollback with multi-transaction mode, which means

that recovery from a failed or aborted load must be handled by

your own load process.

We recommend using –m only when loading into an empty

table, so that you can recover without data loss. To recover from

a load failure: drop the destination table, resolve the load issue,

re-create the destination table, and run the load again.

TIMESTAMP

Timestamp in PDW is treated differently to SQL Server. In SQL server the

current practice is to use the rowversion keyword instead of the

timestamp keyword however the two commands are functionally

equivalent in SQL Server. In PDW there is no direct functional equivalent

to the rowversion that auto updates if the row is changed. In PDW

partially similar functionality can be achieved by using the datetime2

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 33

data type and CURRENT_TIMESTAMP. Note that in PDW the column

does not auto update if the row is changed like it does in SQL Server.

In SQL Server rowversion and timestamp columns are used to provide

application controlled row change detection and optimistic locking for

mainly OLTP databases. In PDW the same is not true since the platform

is designed to support data warehouse requirements rather than

thousands of singleton insert and updates.

The issue can sometimes arise when data needs to be migrated to the

data warehouse and a column is needed to contain the source

rowversion data. The binary data type can provide a solution here.

 Non nullable rowversion / timestamp data type is equivalent to

BINARY(8) data type.

 Nullable rowversion / timestamp data type is equivalent to

VARBINARY(8) data type.

If this functionality is required then either the application will need to

track and make the relevant updates in application logic or this

functionality could be undertaken in SQL Server and the resulting data

loaded into PDW.

For example:

CREATE TABLE Table1 (Key1 INT, VersionCol

ROWVERSION);

Can be converted to the following in PDW:

CREATE TABLE Table1 (Key1 INT, VersionCol BINARY(8));

There are also cases where a timestamp is needed in order to track a

certain action or event or even provide for some rudimentary application

based locking behavior. Although it is not a best practice to carry out

OLTP style workloads within a data warehouse there may be no other

easy option to overcome a specific issue. A common use of this is to be

able to easily record the batches of data loaded into the data warehouse

or a specific multistep ELT process.

For example:

CREATE TABLE ProcessRunning

(

 BatchID INTEGER,

 DescriptionVal VARCHAR(30),

 col2 DATETIME2

);

DECLARE @currTS DATETIME2

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 34

SET @currTS = CURRENT_TIMESTAMP

INSERT INTO ProcessRunning VALUES (1, 'BIG ELT Xform

process', @currTS);

-- The BatchID could then be used to identify added

rows in a given batch.

MIGRATING TEXT, BLOBS AND VARCHAR(MAX), NVARCHAR(MAX),

VARBINARY(MAX)

The following data types are not supported in PDW:

 TEXT

 VARCHAR(MAX)

 NVARCHAR(MAX)

 VARBINARY(MAX)

 XML

When dealing with these data types there are several options that need

to be evaluated.

1. Leave the large BLOB data in the source operational systems.

2. Break up BLOB data into logical fields and then migrate. In many

cases VARCHAR(MAX) columns are being used to store data that

could be broken down further into different columns and different

data types. While this is not always possible a simple investigation

of the actual data in the VARCHAR(MAX) fields can yield a lot of

information and provide more choices. When following this

approach you also need to consider the row size limitations.

3. Determine the actual size of the largest amount data in the

VARCHAR(MAX) field. In most cases this is a small enough value

that the data could be translated to a smaller data type.

For example:

-- Displays the max length of the largest string.

SELECT MAX(DATALENGTH(DescriptionVal)) FROM tbl1

If the size of the data is still too big to fit in the row and including it

would exceed the 8KB per page limit then another potential option is to

have the large text column in a separate table and related to the main

row by an ID.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 35

Migrating or Working with Spatial Data Types

In the current release PDW does not support directly performing

calculations with spatial data types in the same way as is possible with

SQL Server. Having said this it is possible to store spatial data in PDW

so that it can be retrieved and processed in a seamless fashion in order

perform further analysis by utilizing a distributed database architecture.

In this case PDW would be the master system hosting the source raw

data. SQL server hosts could then extract and post process this data to

perform other calculations. Fast Infiniband interconnects provide

sufficient throughput to transfer large volumes of data at a high speed

in order to both reduce the burden on the central enterprise data

warehouse as well as harness native functionality that is available in SQL

server today.

Base raw data can be migrated from SQL Server and stored in existing

PDW data types with no loss. The data can be retrieved via normal T-

SQL queries and the spatial processing can be done via SQL server.

Importing Data - Spatial Data can be converted into data which can then

be stored within a PDW compatible data type such as an NVARCHAR()

or VARCHAR(). Importing Spatial Types and converting them to

VARCHAR can be accomplished via SSIS, CLR or custom data conversion

application/script.

Retrieving Data - SQL Server can connect to PDW via a linked server

connection, querying data directly or retrieving data via SSIS. Both

connection types operate over the fast Infiniband network to support

fast data transfers.

Linked servers can be queried within SQL server in much the same

fashion as tables. A view would then be created to convert back to a

spatial type to support geometric calculations within SQL Server. Overall

this solution would be cost effective to implement since the heavy duty

data retrieval and aggregations work is done by PDW in a scalable

fashion. Geospatial calculations and any post processing can be

performed on less expensive SMP servers running SQL Server Standard

Edition.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 36

This is an example of working with spatial data.

There are syntax differences to be aware of between SQL Server and

PDW. In most cases the extra complexity needed in the SQL Server

syntax has been removed as it’s not applicable for PDW. This reduced

syntax leveraging the appliance model is both easier to learn as well as

less complex to support in the long term.

Create Database Statement

The create database statement syntax is significantly simpler than the

syntax needed for SQL Server.

CREATE DATABASE database_name

WITH (

 [AUTOGROW = ON | OFF ,]

 REPLICATED_SIZE = replicated_size [GB] ,

 DISTRIBUTED_SIZE = distributed_size [GB] ,

 LOG_SIZE = log_size [GB])

[;]

The appliance automatically places the database files on the

appropriately for best performance and therefore the file specification

and other file related parameters are not needed. This paper has

already covered concepts relating to distributed tables vs replicated

tables in previous sections.

Syntax
Differences

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 37

REPLICATED_SIZE

The amount of data in GB allocated for replicated tables. This is

the amount of data allocated on a per compute node basis.

DISTRIBUTED_SIZE

The amount of data in GB allocated for distributed tables. This is

the amount of data allocated over the entire appliance. Meaning

that in a on a per compute node basis the disk space allocated

equals the DISTRIBUTED_SIZE divided by the number of compute

nodes in the appliance.

LOG_SIZE

The amount of data in GB allocated for the transaction log. This

is the amount of data allocated over the entire appliance.

Meaning that in a on a per compute node basis the disk space

allocated equals the LOG_SIZE divided by the number of

compute nodes in the appliance.

AUTOGROW

Governs if the database size is fixed or if the appliance will

automatically increase the disk allocation for the database as

needed until the amount of physical disk space in the appliance

is consumed. It is recommended that the database be created

big enough before loading data in order to minimize auto grow

events that can impact data loading performance.

MIGRATING A SQL SERVER DATABASE AND SIZING FOR PDW

When migrating databases one must calculate the amount of disk space

allocated for replicated vs distributed tables. These general rules

provide guidance for when to make a table replicated or distributed.

 When to set tables as replicated.

 Dimension and reference tables are typically replicated.

 Tables with less than 5GB of heap data are typically replicated.

 Tables that have no identifiable distribution key that also match

the other criteria.

 When to set tables as distributed.

 Fact tables should be distributed.

 Tables with greater than 5 GB of heap data (excluding indexes)

is considered large enough to typically be set as distributed.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 38

 Tables that have columns with reasonably high cardinality and

where these columns are ideally also present in aggregation

clauses in queries submitted.

 Understanding the business and data will also highlight

distributed tables.

Once the table sizes are known and categorized then it’s a simple matter

of adding a percentage for growth on a year to year basis. It is also

important to allow sufficient space to be able to make a copy of the

largest distributed table should the need arise. If partitioning is used on

the fact table(s) since its so large then sufficient space for at least a few

extra partitions should be allocated. These simple guidelines together

with the categorization of tables between distributed vs. replicated will

provide sufficient insight into sizing the database.

Create Table Statement

The main differences in syntax relating to the create table statement is

the extra syntax related to nominating a table as either replicated or

distributed or if the table is stored as a clustered column store.

For example:

CREATE TABLE myTable

(

 id INT NOT NULL

 , lastName VARCHAR(20)

 , zipCode VARCHAR(6)

)

WITH

(

 DISTRIBUTION = HASH (id) -- <- Nominates the

distribution column

 , CLUSTERED COLUMNSTORE INDEX -- <- Specifies

column store.

);

Replicated tables are defined with this syntax:

WITH

(

 DISTRIBUTION = REPLICATE -- <- Nominates the

TABLE as replicated

);

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 39

Create Table Differences

 PRIMARY KEY and UNIQUE syntax is not supported.

 Data compression is always page compression unless the table is

created with a column store structure.

 FILESTREAM storage is not supported.

 Cannot specify that a table is to be created in a specific filegroup

by naming the filegroup. Partitions can be used to spread and

segment data. This reduces the effort required by the DBA.

 Referential FOREIGN KEY constraints cannot be defined. However

default constraints are supported. In data warehouse designs

referential integrity constraints impose a very significant

performance penalty when loading data and updating data as the

constraints have to be validated. Current practice with enterprise

data warehouse systems is to avoid the use of referential

constraints in favor of higher performance.

 Cascade update and delete operations are not supported.

Specifying Partitions

Partitions must be specified as part of the create table statement. The

partition scheme and partition function syntax that is required for SQL

Server is not required for PDW. The partition functions and schemes are

setup automatically by PDW.

For example:

The following is SQL Server Syntax:

CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000)

;

GO

CREATE PARTITION SCHEME myRangePS1

AS PARTITION myRangePF1

TO (test1fg, test2fg, test3fg, test4fg)

;

GO

CREATE TABLE myTable

(

 ID INTEGER,

 Col1 VARCHAR(10),

 Col2 VARCHAR(10)

)

ON myRangePS1 (ID)

;

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 40

Translates to the following PDW Syntax (assuming a distributed table):

CREATE TABLE myTable

(

 ID INTEGER,

 Col1 VARCHAR(10),

 Col2 VARCHAR(10)

)

WITH

(

 DISTRIBUTION = HASH(ID)

 , PARTITION (ID RANGE LEFT FOR VALUES (1, 100,

1000))

);

The $PARTITION function is not supported in queries however partition

elimination is still supported and performed via the use of WHERE clause

predicates.

For example:

The following is SQL Server Syntax:

SELECT COUNT(*) FROM myTable

WHERE col1 = "xx"

 AND $PARTITION.myRangePF1(ID) = 2

;

Translates to the following PDW Syntax:

SELECT COUNT(*) FROM myTable

WHERE col1 = "xx"

 AND ID > 100 AND ID <= 1000 -- Specifies

partition 2

;

Migrating Triggers

PDW does not support Triggers functionality in the current release.

Triggers are mainly used in OLTP solutions and therefore have very

limited application in data warehouse solutions. Triggers in OLTP

solutions are used for implementing cascading update functionality or

other logic based on changed rows. In data warehouse solutions data

changes can be implemented via operational data stores (ODS) or in the

ETL/ELT processes that cleanse and layout data for maximum retrieval

query and processing performance.

It is recommended that functionality requiring triggers is implemented

in ODS systems and not in the enterprise data warehouse. A hub and

spoke architecture using both PDW and SQL Server would be an ideal

solution to such issues. Intermediate work can be performed on SMP

SQL servers and the heavy duty queries and aggregations can be

executed against PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 41

Schema Ownership

Schemas operate in a similar fashion in PDW as they do in SQL Server. In

SQL Server when creating a schema within the same transaction you can

also create tables, views, and set GRANT, DENY or REVOKE permissions

on those objects. This is not supported in PDW.

SQL Server CREATE SCHEMA:

USE AdventureWorks2012;

GO

CREATE SCHEMA Sprockets AUTHORIZATION mwinter

 CREATE TABLE NineProngs

 (

 source int

 , cost int

 , partnumber int

)

 GRANT SELECT ON SCHEMA::Sprockets TO julius

 DENY SELECT ON SCHEMA::Sprockets TO danny;

GO

Equivalent PDW Syntax:

USE AdventureWorks2012;

CREATE SCHEMA Sprockets AUTHORIZATION mwinter

GO

CREATE TABLE Sprockets.NineProngs

(

 source int

 , cost int

 , partnumber int

)

WITH (DISTRIBUTION = HASH(source))

GRANT SELECT ON SCHEMA::Sprockets TO julius

DENY SELECT ON SCHEMA::Sprockets TO danny

GO

Views

Views operate in a similar fashion in PDW as they do in SQL Server. In

PDW the view definitions are stored in the control node and expanded

during query compilation. As such schema binding and materialized

views are not supported.

Unsupported View Creation Options:

WITH CHECK OPTION, ENCRYPTION, SCHEMABINDING,

VIEW_METADATA

Migrating SELECT Statements

The select statement between SQL Server and PDW is very similar. Minor

additions exist in order to harness the added performance that PDW can

provide when selecting and transforming large amounts of data. PDW

introduces a new statement called Create Table as Select (CTAS). This

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 42

replaces the SQL Server SELECT INTO statement and provides additional

functionality, such as the ability to specify the table geometry

(Distributed, Replicate), indexing (Heap, Clustered Index, Clustered

ColumnStore Index) and partitioning options. This operation is also

minimal logged by default.

Changing SELECT INTO syntax to CTAS Statements will leverage the

added performance that PDW provides. The CTAS statement is covered

in other sections of this document so this example focuses on the syntax

differences.

For example, the SQL Server SELECT INTO Statement:

SELECT

 c.ID

 , c.FirstName

 , c.LastName

 , e.JobTitle

 , a.AddressLine1

 , a.City

 , a.PostalCode

INTO dbo.AddressesList

FROM Person.Person AS c

 INNER JOIN HumanResources.Employee AS e

 ON e.BusinessEntityID = c.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

 INNER JOIN Person.StateProvince as sp

 ON sp.StateProvinceID = a.StateProvinceID

Translates to the following PDW statement (assuming the table is

distributed on the ID column):

CREATE TABLE dbo.AddressesList

WITH (DISTRIBUTION = HASH (ID))

AS

SELECT

 c.ID

 , c.FirstName

 , c.LastName

 , e.JobTitle

 , a.AddressLine1

 , a.City

 , a.PostalCode

FROM Person.Person AS c

 INNER JOIN HumanResources.Employee AS e

 ON e.BusinessEntityID = c.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

 INNER JOIN Person.StateProvince as sp

 ON sp.StateProvinceID = a.StateProvinceID

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 43

Assuming a replicated table, the translation would be:

CREATE TABLE dbo.AddressesList

WITH (DISTRIBUTION = REPLICATE)

AS

SELECT

 c.ID

 , c.FirstName

 , c.LastName

 , e.JobTitle

 , a.AddressLine1

 , a.City

 , a.PostalCode

FROM Person.Person AS c

 INNER JOIN HumanResources.Employee AS e

 ON e.BusinessEntityID = c.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

 INNER JOIN Person.StateProvince as sp

 ON sp.StateProvinceID = a.StateProvinceID

The body of the select statement remains the same within the PDW

syntax translation. All that has changed is the addition of the table

creation portion of the syntax. These relatively minor differences in

syntax can provide orders of magnitude better performance between

SMP and MPP platforms.

Migrating UPDATE Statements

The update statement in PDW is similar to the update statement

functionality in SQL Server in most ways. However there are some

differences that will require modification of update statement syntax.

 Update statements cannot contain the TOP clause.

 Update statements cannot contain a FROM clause and a sub-query.

For example, the following statement is not allowed:

UPDATE r

SET update_ts = CURRENT_TIMESTAMP

FROM region AS r

WHERE EXISTS (SELECT 1

 FROM nation AS n

 WHERE n.region_key = r.region_key

 AND n.nation_key = 0)

The above query can be rewritten as an implicit join:

UPDATE region

SET update_ts = CURRENT_TIMESTAMP

FROM nation AS n

WHERE n.region_key = region.region_key

 AND n.nation_key = 0

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 44

 Update statements cannot contain explicit joins in the FROM

clause. For example, the following statement is not allowed:

UPDATE c

SET population_ct = population_ct + 1

FROM census AS c

 INNER JOIN location AS l

 ON c.location_key = l.location_key

WHERE l.country_nm = 'Australia'

 AND l.state_nm = 'Victoria'

The above query can be rewritten as an implicit join in the FROM

clause. The following statement is allowed:

UPDATE census

SET population_ct = population_ct + 1

FROM location AS l

WHERE census.location_key = l.location_key

WHERE l.country_nm = 'Australia'

 AND l.state_nm = 'Victoria'

 Update statements cannot contain more than one join in the FROM

clause. For example, the following statement is not allowed:

UPDATE order_line

SET dispatch_ts = CURRENT_TIMESTAMP

FROM customer AS c

 , order AS o

WHERE order_line.order_key = o.order_key

 AND order_line.customer_key = c.customer_key

 AND o.order_no = 'MS12345678-90'

 AND c.customer_nm = 'Microsoft'

The above query could be rewritten to make use of a view in which

to encapsulate the additional joins, For example:

CREATE VIEW dbo.order_product

AS

SELECT

 *

FROM dbo.order AS o

 INNER JOIN dbo.product AS p

 ON o.product_key = p.product_key

 ;

UPDATE order_line

SET dispatch_ts = CURRENT_TIMESTAMP

FROM order_product AS op

WHERE order_line.order_key = op.order_key

 AND order_line.product_key = p.product_key

 AND op.order_no = 'MS12345678-90'

 AND op.supplier_nm = 'Microsoft'

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 45

Migrating DELETE Statements

Although delete statement syntax can be migrated from SQL Server to

PDW with few if any changes, the performance can be much better

when deleting large percentages of a given large table by converting the

delete statement to a CTAS statement.

Delete statements are executed on a row by row basis and are logged

operations and depending on indexing complexity a lot of database

pages need to be updated and freed. This can cause fragmentation as

well as slow performance to delete large amounts of data due to the

large amount of updates needed.

CTAS statements can provide much better performance on large deletes

since the data to be preserved can be put into a new table while the old

table is dropped.

In the example below the pre 1998 date would be only 20% of say a 10

billion row table or approximately 2 billion rows. In order to delete this

amount of data there would be four possible options.

 Option 1 – Run a normal delete command which would be a fairly

lengthy operation.

DELETE FROM BigFactTable

WHERE ProductReleaseDate < 1/1/1998

 Option 2 – If the table is partitioned by year or month then the

appropriate partitions can be switched out to individual tables and

deleted via the ALTER TABLE command syntax. This is a very fast

process but depends on the table already being partitioned

appropriately.

ALTER TABLE BigFactTable SWITCH PARTITION 2 TO

DUMMYTABLE;

DROP TABLE DUMMYTABLE;

 Option 3 – Convert the delete statement to a CTAS statement by

selecting the data to keep into a new table and then dropping the

old table. This option is not as fast as switching out the partition

but it will be many times faster than the normal delete operation

and the table does not have to be pre-partitioned.

CREATE TABLE BigFactTable_NEW

WITH (DISTRIBUTION = HASH (ID))

AS

SELECT

 *

FROM BigFactTable

WHERE ProductReleaseDate >= 1/1/1998

RENAME OBJECT BigFactTable TO BigFactTable_OLD

RENAME OBJECT BigFactTable_NEW TO BigFactTable

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 46

DROP TABLE BigFactTable

-- The original table is distributed on a

-- column named ID.

-- The same distribution column is maintained

-- in the new table.

 Option 4 – Execute a “Trickle” Delete. Which executes the delete

statement from within a loop, deleting a small number of rows,

approximately 100,000 each iteration. Reducing any potential

logging overhead.

DECLARE @count INT = 1;

WHILE @count > 0

BEGIN

 IF OBJECT_ID('tempdb..#DeleteInc') IS NOT NULL

 DROP TABLE #DeleteInc

 CREATE TABLE #DeleteInc

 WITH (LOCATION=USER_DB, DISTRIBUTION=REPLICATE)

 AS

 SELECT TOP 100000

 ID

 FROM dbo.BigFactTable

 WHERE ProductReleaseDate < 1/1/1998

 SET @count = (SELECT COUNT(*) FROM #DeleteInc)

 IF @count > 0

 BEGIN

 DELETE FROM dbo.BigFactTable

 WHERE ID IN (SELECT ID FROM #DeleteInc)

 END

END

@@ROWCOUNT Workaround

PDW currently does not support @@ROWCOUNT or ROWCOUNT_BIG

functions. If you need to obtain the number of rows affected by the last

INSERT, UPDATE or DELETE statement, you can use the following SQL:

-- @@ROWCOUNT

SELECT CASE WHEN MAX(distribution_id) = -1

 THEN SUM(DISTINCT row_count)

 ELSE SUM(row_count)

 END AS row_count

FROM sys.dm_pdw_sql_requests

WHERE row_count <> -1

 AND request_id IN (SELECT TOP 1

 request_id

 FROM sys.dm_pdw_exec_requests

 WHERE session_id = SESSION_ID()

 ORDER BY end_time DESC)

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 47

Stored Procedures

Stored Procedure creation is supported in PDW and supports most

features available in SQL Server. As opposed to SQL Server however the

individual commands in PDW stored procedures execute in parallel

across all the nodes rather than serially like they do in SQL Server.

SQL Server PDW supports nesting of Stored Procedures up to 8 levels

deep compared to the 32 levels deep supported by SQL Server.

The following stored procedure features are not supported in SQL Server

PDW:

 Temporary stored procedures

 Numbered stored procedures

 Table valued parameters for stored procedures

 Extended stored procedures

 CLR stored procedures

 Read-only parameters for stored procedures

 Encrypted stored procedures

 Execution of stored procedures under a different user context (the

EXECUTE AS clause)

 Default parameters

 The RETURN statement

Other Functionality Limitations and Differences

The following functionality is not supported in PDW at this time.

Functions – UDF and CLR Currently Not Supported

Rules Rule Syntax is not supported. However defaults and

constraints can be defined on tables. See the CREATE TABLE

statement.

Cursors Not supported at this time. Cursor operations are by

definition designed to process data sets in a row by row

fashion rather than in a set or “batch” which is the optimal

way to process large amounts of data. Cursors operations

are not recommended in enterprise data warehouse

solutions.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 48

Functions – UDF and CLR Currently Not Supported

Optimizer Hints Optimizer hints should not be migrated from SQL Server to

PDW.

If code is to be migrated from SQL Server query hints can be

removed manually via a code review process.

Optimizer Hints vary significantly between PDW and SQL

Server Many of the SQL Server hints do not apply and

indeed if migrated could force poor performance. The

distributed execution plan that is created and executed on

PDW can make hints incompatible.

In PDW hints can be used to specify the join type as well as

to specify if a table is to be replicated or distributed in order

to resolve an incompatible query join situation. It is

recommended that the use of hints is avoided unless

adequate and ongoing testing verifies that hints should be

used.

Statistics vs. Optimizer Hints

Up to date table statistics enable the optimizer to made the

best evaluation and pick the most appropriate execution

plan, Join order and join types. Conversely Invalid or old

statistics can guide the optimizer to pick a sub optimal

execution plan. Query hints should only be considered as a

last option and only once statistics are created and up to

date. Table Statistics creation is a performance

optimization topic and covered in the PDW product

documentation.

Security Considerations - Migration

When moving a database from SQL Server to PDW all the metadata of

the dependent entities and objects in the database must be recreated

on the destination platform. This includes the user security access as

well as logins and passwords.

PDW supports Transparent Data Encryption (TDE), allowing for real-time

I/O encryption and decryption of the data and log files. Encrypted data

on SQL Server will first have to be decrypted before being able to be

loaded into PDW, where if TDE has been enabled it will be encrypted

and therefore protected at “rest”. Certificates and Keys will need to be

recreated.

Syntax Comparisons

CREATE LOGIN

The CREATE LOGIN command is simplified substantially in PDW. Login

creation with a certificate or an asymmetric key is not supported in the

current release.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 49

CREATE LOGIN loginName { WITH <option_list1> | FROM

WINDOWS }

<option_list1> ::=

 PASSWORD = { 'password' } [MUST_CHANGE]

 [, <option_list2> [,...]]

<option_list2> ::=

 CHECK_EXPIRATION = { ON | OFF}

 | CHECK_POLICY = { ON | OFF}

When migrating any database it is important to note that while login

passwords can be easily reset, user logins, user names as well as

database access and permissions on objects must be maintained on the

new database platform. An approach to accurately recreating the logins,

users and roles on PDW is to first retrieve the metadata for these logins,

users and roles on SQL Server together with any associated permissions.

This can be achieved by using the database scripting wizard and

specifying that logins and object level permissions should also be

scripted.

The SQL Server database scripting wizard can be initiated by right

clicking on a user database and selecting “Tasks” and then “Generate

Scripts…” The scripting wizard will generate the SQL Statements to

recreate the appropriate permissions.

The following T-SQL functions can be used to query the SQL Server

security metadata, allowing you to perform command level validation on

individual users and related object permissions.

NOTE: These functions are not supported by SQL Server PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 50

fn_builtin_permissions()

This function lists all of the securable classes available in SQL Server. A

securable class is any object that can be assigned permissions. For

example tables, views, procedures etc. The values returned will be used

in the execution of the fn_my_permissions() function to list out the

permissions for nominated users on nominated securable objects.

fn_my_permissions()

This lists out the permissions that a given user context has been granted

on a securable object.

For example:

SELECT DISTINCT

 class_desc

FROM fn_builtin_permissions(default)

;

Lists out 25 securable objects in SQL Server 2012.

The example below lists the permissions that user "danny" has on the

object "table_1". The object could be a table, view, procedure etc. Since

the "fn_my_permissions()" function is executed in the current user

context the user context must be set and reset as needed. The user must

exist in the database.

EXECUTE AS USER = 'danny';

SELECT

 entity_name

 , permission_name

FROM fn_my_permissions('testdb.dbo.table_1',

'OBJECT')

ORDER BY subentity_name

 , permission_name

;

REVERT;

GO

This example lists the permissions that user "danny" has on the database

called "testdb".

EXECUTE AS USER = 'danny';

SELECT

 entity_name

 , permission_name

FROM fn_my_permissions('testdb', 'DATABASE')

ORDER BY subentity_name

 , permission_name

;

REVERT;

GO

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 51

This migration guide covers the differences between SQL Server and SQL

Server Parallel Data Warehouse (PDW), discussing the steps necessary to

migrate a SQL Server database to SQL Server PDW.

Analytics Platform System Website – http://www.microsoft.com/aps/

SQL Server Website - http://www.microsoft.com/sqlserver/

SQL Server TechCenter - http://technet.microsoft.com/en-us/sqlserver/

SQL Server DevCenter - http://msdn.microsoft.com/en-us/sqlserver/

Did this paper help you? Please give us your feedback. Tell us on a scale

of 1 (poor) to 5 (excellent), how would you rate this paper and why have

you given it this rating? For example:

 Are you rating it high due to having good examples, excellent

screenshots, clear writing, or another reason?

 Are you rating it low due to poor examples, fuzzy screenshots,

unclear writing?

This feedback will help us improve the quality of the white papers we

release.

Send feedback.

Conclusion

For More
Information

Feedback

http://www.microsoft.com/aps/
http://www.microsoft.com/sqlserver/
http://technet.microsoft.com/en-us/sqlserver/
http://msdn.microsoft.com/en-us/sqlserver/
mailto:sqlfback@microsoft.com

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 52

Appendix - Unsupported SQL Server Syntax

The following Syntax is not directly supported.

Category Command Notes

Aggregate functions CHECKSUM_AGG Not Applicable in PDW.

Aggregate functions GROUPING Not Applicable in PDW.

Aggregate functions GROUPING_ID Not Applicable in PDW.

ALTER ALTER APPLICATION ROLE Not Applicable in PDW.

ALTER ALTER ASSEMBLY Not Applicable in PDW.

ALTER ALTER ASYMMETRIC KEY Not Applicable in PDW.

ALTER ALTER BROKER PRIORITY Not Applicable in PDW.

ALTER ALTER CREDENTIAL Not Applicable in PDW.

ALTER ALTER CRYPTOGRAPHIC PROVIDER Not Applicable in PDW.

ALTER ALTER DATABASE AUDIT SPECIFICATION Not Applicable in PDW.

ALTER ALTER DATABASE Compatibility Level Not Applicable in PDW. Compatibility level in PDW has been set to

emulate SQL Server so that third party applications continue to work.

ALTER ALTER DATABASE Database Mirroring Not Applicable in PDW.

High availability is provided by appliance infrastructure and database

mirroring is not utilized.

ALTER ALTER DATABASE File and Filegroup Options Not Applicable in PDW.

Files and Filegroups are automatically defined by PDW and no user

intervention is required.

ALTER ALTER ENDPOINT Not Applicable in PDW.

ALTER ALTER EVENT SESSION Not Applicable in PDW.

ALTER ALTER FULLTEXT CATALOG Not Applicable in PDW.

ALTER ALTER FULLTEXT INDEX Not Applicable in PDW.

ALTER ALTER FULLTEXT STOPLIST Not Applicable in PDW.

ALTER ALTER FUNCTION Not Applicable in PDW.

ALTER ALTER MESSAGE TYPE Not Applicable in PDW.

ALTER ALTER PARTITION FUNCTION Not Applicable in PDW.

Appendix

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 53

Category Command Notes

ALTER ALTER PARTITION SCHEME Not Applicable in PDW.

ALTER ALTER QUEUE Not Applicable in PDW.

ALTER ALTER REMOTE SERVICE BINDING Not Applicable in PDW.

ALTER ALTER RESOURCE GOVERNOR Not Applicable in PDW.

Resource governance is already implemented via workload

management resource classes in PDW. PDW simplifies the syntax

and complexity to allow resource governance during large batch

execution. See books online for more information under the

heading “Workload Management”.

ALTER ALTER RESOURCE POOL Not Applicable in PDW.

See books online for more information under the heading “Workload

Management”.

ALTER ALTER ROUTE Not Applicable in PDW.

ALTER ALTER SERVER AUDIT Not Applicable in PDW.

ALTER ALTER SERVER AUDIT SPECIFICATION Not Applicable in PDW.

ALTER ALTER SERVICE Not Applicable in PDW.

ALTER ALTER SERVICE MASTER KEY Not Applicable in PDW.

ALTER ALTER SYMMETRIC KEY Not Applicable in PDW.

ALTER ALTER TRIGGER Not Applicable in PDW.

Triggers are not supported in PDW.

ALTER ALTER VIEW Not Applicable in PDW.

DROP the view and re-CREATE the view instead.

ALTER ALTER WORKLOAD GROUP Not Applicable in PDW.

See books online for more information under the heading “Workload

Management”.

ALTER ALTER XML SCHEMA COLLECTION Not Applicable in PDW.

XML Data types are not supported in PDW.

BACKUP / RESTORE BACKUP MASTER KEY Not Applicable in PDW.

BACKUP / RESTORE BACKUP SERVICE MASTER KEY Use BACKUP CERTIFICATE instead.

BACKUP / RESTORE RESTORE FILELISTONLY Not Applicable in PDW.

BACKUP / RESTORE RESTORE LABELONLY Not Applicable in PDW.

BACKUP / RESTORE RESTORE MASTER KEY Not Applicable in PDW.

BACKUP / RESTORE RESTORE REWINDONLY Not Applicable in PDW.

BACKUP / RESTORE RESTORE SERVICE MASTER KEY Not Applicable in PDW.

BACKUP / RESTORE RESTORE VERIFYONLY Not Applicable in PDW.

Clause OUTPUT Clause Not Applicable in PDW.

Clause WITH common_table_expression Non-Recursive form is supported.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 54

Category Command Notes

Collation COLLATIONPROPERTY Not Applicable in PDW.

Collation Functions / Operators COLLATE Not Applicable in PDW.

Collation Functions / Operators SQL Server Collation Name Not Applicable in PDW.

Collation Functions / Operators Windows Collation Name Not Applicable in PDW.

Configuration Functions @@DBTS Not Applicable in PDW.

Configuration Functions @@LANGID Not Applicable in PDW.

Configuration Functions @@LOCK_TIMEOUT Not Applicable in PDW.

Configuration Functions @@MAX_CONNECTIONS Not Applicable in PDW.

Configuration Functions @@MAX_PRECISION Not Applicable in PDW.

Configuration Functions @@NESTLEVEL Not Applicable in PDW.

Configuration Functions @@OPTIONS Not Applicable in PDW.

Configuration Functions @@REMSERVER Not Applicable in PDW.

Configuration Functions @@SERVERNAME Not Applicable in PDW.

Configuration Functions @@SERVICENAME Not Applicable in PDW.

Configuration Functions @@TEXTSIZE Not Applicable in PDW.

Control of Flow CONTINUE Not Applicable in PDW.

Control of Flow GOTO label Not Applicable in PDW.

Control of Flow RETURN Not Applicable in PDW.

Control of Flow WAITFOR Not Applicable in PDW.

CREATE CREATE AGGREGATE Not Applicable in PDW.

CREATE CREATE APPLICATION ROLE Not Applicable in PDW.

CREATE CREATE ASSEMBLY Not Applicable in PDW.

CREATE CREATE ASYMMETRIC KEY Not Applicable in PDW.

CREATE CREATE BROKER PRIORITY Not Applicable in PDW.

Service Broker functionality is not supported in PDW.

CREATE CREATE CONTRACT Not Applicable in PDW.

CREATE CREATE CREDENTIAL Not Applicable in PDW.

CREATE CREATE CRYPTOGRAPHIC PROVIDER Not Applicable in PDW.

CREATE CREATE DATABASE AUDIT SPECIFICATION Not Applicable in PDW.

CREATE CREATE DEFAULT Not Applicable in PDW.

CREATE CREATE ENDPOINT Not Applicable in PDW.

CREATE CREATE EVENT NOTIFICATION Not Applicable in PDW.

CREATE CREATE EVENT SESSION Not Applicable in PDW.

CREATE CREATE FULLTEXT CATALOG Not Applicable in PDW.

CREATE CREATE FULLTEXT INDEX Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 55

Category Command Notes

CREATE CREATE FULLTEXT STOPLIST Not Applicable in PDW.

CREATE CREATE FUNCTION Not Applicable in PDW.

CREATE CREATE MESSAGE TYPE Not Applicable in PDW.

CREATE CREATE PARTITION FUNCTION Not Applicable in PDW.

CREATE CREATE PARTITION SCHEME Not Applicable in PDW.

CREATE CREATE QUEUE Not Applicable in PDW.

Service Broker functionality is not supported in PDW.

CREATE CREATE REMOTE SERVICE BINDING Not Applicable in PDW.

Service Broker functionality is not supported in PDW.

CREATE CREATE RESOURCE POOL Not Applicable in PDW.

See Workload management is PDW Books Online.

CREATE CREATE ROUTE Not Applicable in PDW.

CREATE CREATE RULE Not Applicable in PDW.

CREATE CREATE SERVER AUDIT Not Applicable in PDW.

CREATE CREATE SERVER AUDIT SPECIFICATION Not Applicable in PDW.

CREATE CREATE SERVICE Not Applicable in PDW.

CREATE CREATE SPATIAL INDEX Not Applicable in PDW.

CREATE CREATE SYMMETRIC KEY Not Applicable in PDW.

CREATE CREATE SYNONYM Not Applicable in PDW.

CREATE CREATE TRIGGER Not Applicable in PDW.

CREATE CREATE TYPE Not Applicable in PDW.

CREATE CREATE WORKLOAD GROUP Not Applicable in PDW.

See books online for more information under the heading “Workload

Management”.

CREATE CREATE XML INDEX Not Applicable in PDW.

XML Data types are not supported in PDW.

CREATE CREATE XML SCHEMA COLLECTION Not Applicable in PDW.

XML Data types are not supported in PDW.

Cryptographic Functions ASYMKEY_ID Not Applicable in PDW.

Cryptographic Functions ASYMKEYPROPERTY Not Applicable in PDW.

Cryptographic Functions CERT_ID Not Applicable in PDW.

Cryptographic Functions CERTPROPERTY Not Applicable in PDW.

Cryptographic Functions CRYPT_GEN_RANDOM Not Applicable in PDW.

Cryptographic Functions DECRYPTBYASMKEY Not Applicable in PDW.

Cryptographic Functions DECRYPTBYCERT Not Applicable in PDW.

Cryptographic Functions DECRYPTBYKEY Not Applicable in PDW.

Cryptographic Functions DECRYPTBYKEYAUTOCERT Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 56

Category Command Notes

Cryptographic Functions DECRYPTBYPASSPHRASE Not Applicable in PDW.

Cryptographic Functions ENCRYPTBYASMKEY Not Applicable in PDW.

Cryptographic Functions ENCRYPTBYCERT Not Applicable in PDW.

Cryptographic Functions ENCRYPTBYKEY Not Applicable in PDW.

Cryptographic Functions ENCRYPTBYPASSPHRASE Not Applicable in PDW.

Cryptographic Functions IS_OBJECTSIGNED Not Applicable in PDW.

Cryptographic Functions KEY_GUID Not Applicable in PDW.

Cryptographic Functions KEY_ID Not Applicable in PDW.

Cryptographic Functions SIGNBYASMKEY Not Applicable in PDW.

Cryptographic Functions SIGNBYCERT Not Applicable in PDW.

Cryptographic Functions SYMKEYPROPERTY Not Applicable in PDW.

Cryptographic Functions VERIFYSIGNEDBYASMKEY Not Applicable in PDW.

Cryptographic Functions VERIFYSIGNEDBYCERT Not Applicable in PDW.

Cursor @@CURSOR_ROWS Not Applicable in PDW.

Cursor @@FETCH_STATUS Not Applicable in PDW.

Cursor CURSOR_STATUS Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations @@CURSOR_ROWS Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations @@FETCH_STATUS Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations CLOSE Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations CURSOR_STATUS Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations DEALLOCATE Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations DECLARE @local_variable Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations DECLARE CURSOR Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations FETCH Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations OPEN Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations SET Not Applicable in PDW.

Cursors are not supported in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 57

Category Command Notes

Cursor Operations sp_cursor_list Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations sp_describe_cursor Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations sp_describe_cursor_columns Not Applicable in PDW.

Cursors are not supported in PDW.

Cursor Operations sp_describe_cursor_tables Not Applicable in PDW.

Cursors are not supported in PDW.

Data Type Functions IDENT_CURRENT Not Applicable in PDW.

Data Type Functions IDENT_INCR Not Applicable in PDW.

Data Type Functions IDENT_SEED Not Applicable in PDW.

Data Type Functions IDENTITY Not Applicable in PDW.

Identity Fields not supported in PDW.

Data Types cursor Not Applicable in PDW.

Cursors are not supported in PDW.

Data Types hierarchyid Not Supported in PDW.

Data Types image Not Supported in PDW.

Data Types ntext Not Supported in PDW.

Data Types numeric Not Applicable in PDW.

Use DECIMAL instead

Data Types sql_variant Not Supported in PDW.

Data Types table Not Supported in PDW.

Use temp tables instead.

Data Types text Not Supported in PDW.

Data Types uniqueidentifier Not Supported in PDW.

Data Types xml Not Supported in PDW.

DBCC DBCC CHECKALLOC Not Applicable in PDW.

DBCC DBCC CHECKCATALOG Not Applicable in PDW.

DBCC DBCC CHECKCONSTRAINTS Not Applicable in PDW.

DBCC DBCC CHECKDB Not Applicable in PDW.

DBCC DBCC CHECKFILEGROUP Not Applicable in PDW.

DBCC DBCC CHECKIDENT Not Applicable in PDW.

DBCC DBCC CHECKTABLE Not Applicable in PDW.

DBCC DBCC CLEANTABLE Not Applicable in PDW.

DBCC DBCC DBREINDEX Not Applicable in PDW.

DBCC DBCC dllname (FREE) Not Applicable in PDW.

DBCC DBCC DROPCLEANBUFFERS Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 58

Category Command Notes

DBCC DBCC FREESESSIONCACHE Not Applicable in PDW.

DBCC DBCC FREESYSTEMCACHE Not Applicable in PDW.

DBCC DBCC HELP Not Applicable in PDW.

DBCC DBCC INDEXDEFRAG Not Applicable in PDW.

DBCC DBCC INPUTBUFFER Not Applicable in PDW.

DBCC DBCC OPENTRAN Not Applicable in PDW.

DBCC DBCC OUTPUTBUFFER Not Applicable in PDW.

DBCC DBCC PROCCACHE Not Applicable in PDW.

DBCC DBCC SHOWCONTIG Not Applicable in PDW.

DBCC DBCC SHRINKDATABASE Not Applicable in PDW.

DBCC DBCC SHRINKFILE Not Applicable in PDW.

DBCC DBCC SQLPERF Not Applicable in PDW.

DBCC DBCC TRACEOFF Not Applicable in PDW.

DBCC DBCC TRACEON Not Applicable in PDW.

DBCC DBCC TRACESTATUS Not Applicable in PDW.

DBCC DBCC UPDATEUSAGE Not Applicable in PDW.

DBCC DBCC USEROPTIONS Not Applicable in PDW.

DROP DROP AGGREGATE Not Applicable in PDW.

DROP DROP APPLICATION ROLE Not Applicable in PDW.

DROP DROP ASSEMBLY Not Applicable in PDW.

DROP DROP ASYMMETRIC KEY Not Applicable in PDW.

DROP DROP BROKER PRIORITY Not Applicable in PDW.

DROP DROP CONTRACT Not Applicable in PDW.

DROP DROP CREDENTIAL Not Applicable in PDW.

DROP DROP CRYPTOGRAPHIC PROVIDER Not Applicable in PDW.

DROP DROP DATABASE AUDIT SPECIFICATION Not Applicable in PDW.

DROP DROP DEFAULT Not Applicable in PDW.

DROP DROP ENDPOINT Not Applicable in PDW.

DROP DROP EVENT NOTIFICATION Not Applicable in PDW.

DROP DROP EVENT SESSION Not Applicable in PDW.

DROP DROP FULLTEXT CATALOG Not Applicable in PDW.

Full text catalogs are not supported in PDW.

DROP DROP FULLTEXT INDEX Not Applicable in PDW.

Full text catalogs are not supported in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 59

Category Command Notes

DROP DROP FULLTEXT STOPLIST Not Applicable in PDW.

Full text catalogs are not supported in PDW.

DROP DROP FUNCTION Not Applicable in PDW.

Custom declared functions are not supported in PDW

DROP DROP MESSAGE TYPE Not Applicable in PDW.

DROP DROP PARTITION FUNCTION Not Applicable in PDW.

Specify partition using WHERE clause.

DROP DROP PARTITION SCHEME Not Applicable in PDW.

DROP DROP QUEUE Not Applicable in PDW.

Service Broker is not supported.

DROP DROP REMOTE SERVICE BINDING Not Applicable in PDW.

Service Broker is not supported.

DROP DROP RESOURCE POOL Not Applicable in PDW.

See Workload management is PDW Books Online.

DROP DROP ROUTE Not Applicable in PDW.

Service Broker is not supported.

DROP DROP RULE Not Applicable in PDW.

DROP DROP SERVER AUDIT Not Applicable in PDW.

DROP DROP SERVER AUDIT SPECIFICATION Not Applicable in PDW.

DROP DROP SERVICE Not Applicable in PDW.

DROP DROP SIGNATURE Not Applicable in PDW.

DROP DROP SYMMETRIC KEY Not Applicable in PDW.

DROP DROP SYNONYM Not Applicable in PDW.

DROP DROP TRIGGER Not Applicable in PDW.

Trigger functionality is not supported in PDW.

DROP DROP TYPE Not Applicable in PDW.

DROP DROP WORKLOAD GROUP Not Applicable in PDW.

DROP DROP XML SCHEMA COLLECTION Not Applicable in PDW.

MANAGEMENT CHECKPOINT Not Applicable in PDW.

MANAGEMENT KILL QUERY NOTIFICATION SUBSCRIPTION Not Applicable in PDW.

MANAGEMENT KILL STATS JOB Not Applicable in PDW.

MANAGEMENT RECONFIGURE Not Applicable in PDW.

MANAGEMENT SHUTDOWN Not Applicable in PDW.

Mathematical Functions RAND Not Applicable in PDW.

Metadata Functions @@PROCID Not Applicable in PDW.

Metadata Functions APPLOCK_MODE Not Applicable in PDW.

Metadata Functions APPLOCK_TEST Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 60

Category Command Notes

Metadata Functions ASSEMBLYPROPERTY Not Applicable in PDW.

Metadata Functions COL_LENGTH Not Applicable in PDW.

Metadata Functions COLUMNPROPERTY Not Applicable in PDW.

Metadata Functions DATABASE_PRINCIPAL_ID Not Applicable in PDW.

Metadata Functions DATABASEPROPERTY Not Applicable in PDW.

Use DATABASEPROPERTYEX function instead.

Metadata Functions FILE_ID Not Applicable in PDW.

Metadata Functions FILE_IDEX Not Applicable in PDW.

Metadata Functions FILE_NAME Not Applicable in PDW.

Metadata Functions FILEGROUP_ID Not Applicable in PDW.

Metadata Functions FILEGROUP_NAME Not Applicable in PDW.

Metadata Functions FILEGROUPPROPERTY Not Applicable in PDW.

Metadata Functions FILEPROPERTY Not Applicable in PDW.

Metadata Functions fn_listextendedproperty Not Applicable in PDW.

Metadata Functions FULLTEXTCATALOGPROPERTY Not Applicable in PDW.

Metadata Functions FULLTEXTSERVICEPROPERTY Not Applicable in PDW.

Metadata Functions INDEX_COL Not Applicable in PDW.

Metadata Functions INDEXPROPERTY Not Applicable in PDW.

Metadata Functions KEY_NAME Not Applicable in PDW.

Metadata Functions OBJECT_DEFINITION Not Applicable in PDW.

Metadata Functions OBJECT_SCHEMA_NAME Not Applicable in PDW.

Metadata Functions ORIGINAL_DB_NAME Not Applicable in PDW.

Metadata Functions SCOPE_IDENTITY Not Applicable in PDW.

Metadata Functions STATS_DATE Not Applicable in PDW.

ODBC Scalar Functions OCTET_LENGTH Partial Implementation in PDW.

ODBC Scalar Functions TRUNCATE Partial Implementation in PDW.

Operators (Compound) %= (Modulo EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) &= (Bitwise AND EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) *= (Multiply EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) /= (Divide EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) ^= (Bitwise Exclusive OR EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 61

Category Command Notes

Operators (Compound) |= (Bitwise OR EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) += (Add EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Compound) -= (Subtract EQUALS) (T-SQL) Not Applicable in PDW.

Use expanded syntax instead

Operators (Logical) ALL Not Applicable in PDW.

Operators (Logical) ANY Not Applicable in PDW.

Operators (Logical) SOME Not Applicable in PDW.

Operators (Set) EXCEPT and INTERSECT Not Applicable in PDW.

Operators (String Concatenation) += (String Concatenation) Not Applicable in PDW.

OTHERS BULK INSERT Not Applicable in PDW.

OTHERS DISABLE TRIGGER Not Applicable in PDW.

Triggers are not supported in PDW.

OTHERS ENABLE TRIGGER Not Applicable in PDW.

Triggers are not supported in PDW.

Partition $PARTITION Not Applicable in PDW.

Predicates CONTAINS Not Applicable in PDW.

Predicates FREETEXT Not Applicable in PDW.

Full text search is not supported in PDW

Replication PUBLISHINGSERVERNAME Not Applicable in PDW.

Rowset Functions CONTAINSTABLE Not Applicable in PDW.

Rowset Functions FREETEXTTABLE Not Applicable in PDW.

Rowset Functions OPENDATASOURCE Not Applicable in PDW.

Rowset Functions OPENQUERY Not Applicable in PDW.

Rowset Functions OPENROWSET Not Applicable in PDW.

Rowset Functions OPENXML Not Applicable in PDW.

SECURITY ADD SIGNATGURE Not Applicable in PDW.

Security ADD SIGNATURE Not Applicable in PDW.

SECURITY CLOSE SYMMETRIC KEY Not Applicable in PDW.

SECURITY OPEN SYMMETRIC KEY Not Applicable in PDW.

Security Functions HAS_PERMS_BY_NAME Not Applicable in PDW.

Security Functions IS_MEMBER Not Applicable in PDW.

Security Functions IS_SRVROLEMEMBER Not Applicable in PDW.

Security Functions LOGINPROPERTY Not Applicable in PDW.

Security Functions ORIGINAL_LOGIN Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 62

Category Command Notes

Security Functions PERMISSIONS Not Applicable in PDW.

Security Functions PWDCOMPARE Not Applicable in PDW.

Security Functions PWDENCRYPT Not Applicable in PDW.

Security Functions REVERT Not Applicable in PDW.

Security Functions SETUSER Not Applicable in PDW.

Security Functions SUSER_ID Not Applicable in PDW.

Security Functions SUSER_SID Not Applicable in PDW.

Security Functions SUSER_SNAME Not Applicable in PDW.

Security Functions sys.fn_builtin_permissions Not Applicable in PDW.

Security Functions sys.fn_my_permissions Not Applicable in PDW.

Security Functions USER_ID Not Applicable in PDW.

Service Broker Statements BEGIN CONVERSATION TIMER Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements BEGIN DIALOG CONVERSATION Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements END CONVERSATION Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements GET CONVERSATION GROUP Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements GET TRANSMISSION_STATUS Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements MOVE CONVERSATION Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements RECEIVE Not Applicable in PDW.

Service Broker is not supported

Service Broker Statements SEND Not Applicable in PDW.

Service Broker is not supported

SET Statements SET CURSOR_CLOSE_ON_COMMIT Not Applicable in PDW.

SET Statements SET DEADLOCK_PRIORITY Not Applicable in PDW.

SET Statements SET FIPS_FLAGGER Not Applicable in PDW.

SET Statements SET FORCEPLAN Not Applicable in PDW.

SET Statements SET IDENTITY_INSERT Not Applicable in PDW.

SET Statements SET NOCOUNT Not Applicable in PDW.

SET Statements SET NOEXEC Not Applicable in PDW.

SET Statements SET OFFSETS Not Applicable in PDW.

SET Statements SET PARSEONLY Not Applicable in PDW.

SET Statements SET QUERY_GOVERNOR_COST_LIMIT Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 63

Category Command Notes

SET Statements SET REMOTE_PROC_TRANSACTIONS Not Applicable in PDW.

SET Statements SET SHOWPLAN_ALL Not Applicable in PDW.

SET Statements SET SHOWPLAN_TEXT Not Applicable in PDW.

SET Statements SET SHOWPLAN_XML Not Applicable in PDW.

SET Statements SET STATISTICS IO Not Applicable in PDW.

SET Statements SET STATISTICS PROFILE Not Applicable in PDW.

SET Statements SET STATISTICS TIME Not Applicable in PDW.

SET Statements SET STATISTICS XML Not Applicable in PDW.

SQL Server Utilities Statements \ (Backslash) (T-SQL) Not Applicable in PDW.

Statements MERGE Not Applicable in PDW.

See DWloader.exe for more information about loading data into

PDW.

System Functions @@IDENTITY Not Applicable in PDW.

System Functions @@ROWCOUNT Not Applicable in PDW.

A workaround has been provided in a previous section.

System Functions APP_NAME Not Applicable in PDW.

System Functions BINARY_CHECKSUM Not Applicable in PDW.

System Functions CHECKSUM Not Applicable in PDW.

System Functions COLUMNS_UPDATED Not Applicable in PDW.

System Functions CONNECTIONPROPERTY Not Applicable in PDW.

System Functions CONTEXT_INFO Not Applicable in PDW.

System Functions CURRENT_REQUEST_ID Not Applicable in PDW.

System Functions ERROR_LINE Not Applicable in PDW.

System Functions fn_helpcollations Not Applicable in PDW.

System Functions fn_servershareddrives Not Applicable in PDW.

System Functions fn_virtualfilestats Not Applicable in PDW.

System Functions FORMATMESSAGE Not Applicable in PDW.

System Functions GET_FILESTREAM_TRANSACTION_CONTEXT Not Applicable in PDW.

System Functions GETANSINULL Not Applicable in PDW.

System Functions HOST_ID Not Applicable in PDW.

System Functions HOST_NAME Not Applicable in PDW.

System Functions MIN_ACTIVE_ROWVERSION Not Applicable in PDW.

System Functions NEWID Not Applicable in PDW.

System Functions NEWSEQUENTIALID Not Applicable in PDW.

System Functions PATHNAME Not Applicable in PDW.

Microsoft SQL Server to SQL Server PDW Migration Guide (AU3) 64

Category Command Notes

System Functions ROWCOUNT_BIG Not Applicable in PDW.

A workaround has been provided in a previous section.

System Functions SESSIONPROPERTY Not Applicable in PDW.

System Functions sys.dm_db_index_physical_stats Not Applicable in PDW.

System Statistical Functions @@CONNECTIONS Not Applicable in PDW.

See section in this paper relating to partitions.

System Statistical Functions @@CPU_BUSY Not Applicable in PDW.

System Statistical Functions @@IDLE Not Applicable in PDW.

System Statistical Functions @@IO_BUSY Not Applicable in PDW.

System Statistical Functions @@PACK_RECEIVED Not Applicable in PDW.

System Statistical Functions @@PACK_SENT Not Applicable in PDW.

System Statistical Functions @@PACKET_ERRORS Not Applicable in PDW.

System Statistical Functions @@TIMETICKS Not Applicable in PDW.

System Statistical Functions @@TOTAL_ERRORS Not Applicable in PDW.

System Statistical Functions @@TOTAL_READ Not Applicable in PDW.

System Statistical Functions @@TOTAL_WRITE Not Applicable in PDW.

System Statistical Functions fn_virtualfilestats Not Applicable in PDW.

Text & Image Functions TEXTPTR Not Applicable in PDW.

Text & Image Functions TEXTVALID Not Applicable in PDW.

Transaction Statements BEGIN DISTRIBUTED TRANSACTION Not Applicable in PDW.

Transaction Statements SAVE TRANSACTION Not Applicable in PDW.

Trigger Functions COLUMNS_UPDATED Not Applicable in PDW.

Trigger Functions EVENTDATA Not Applicable in PDW.

Trigger Functions TRIGGER_NESTLEVEL Not Applicable in PDW.

XML Statements WITH XMLNAMESPACES Not Applicable in PDW.

XML Statements xml_schema_namespace Not Applicable in PDW.

