[image:]

An overview of Azure Active Directory B2C
Use cloud power to collaborate with your consumers

Microsoft France
Published: September 2015 (Updated: June 2016)
Version: 0.9 (DRAFT)

Author: Philippe Beraud (Microsoft France)
Reviewers: Kim Cameron, Swaroop Krishnamurthy (Microsoft Corporation)

For the latest information on Azure Active Directory, please see
http://azure.microsoft.com/en-us/services/active-directory/

Copyright© 2016 Microsoft Corporation. All rights reserved.

Abstract: Azure AD, the Identity Management as a Service (IDaaS) cloud multi-tenant service with proven ability to handle billions of authentications per day, extends its capabilities to manage consumer identities with a new service for Business-to-Consumer: Azure AD B2C, now in public preview.
Azure AD B2C is a comprehensive, cloud-based, consumer identity and access management solution for your consumer-facing applications that can be integrated in any platform and accessed from any device.
Azure AD B2C enables social as well as arbitrary email address/username and password login, customized self-service sign-up, and self-service password reset for consumers of your application, and even more. This increases convenience for your consumers while reducing load on your developers, and Azure AD B2C is a highly available global service that can support hundreds of millions of consumer identities.
This document is intended for IT professionals, system architects, and developers who are interested in understanding how Azure AD B2C help managing identities for their consumer-facing application in their (hybrid) cloud environment and how to leverage the related features.

Table of Content
Notice	2
Introduction	3
Objectives of this paper	6
Non-objectives of this paper	7
Organization of this paper	7
About the audience	8
Supporting Business-to-Consumer scenarios	9
Managing identities at scale	9
Extending Azure AD for external identities	10
Understanding Azure AD B2C key objectives	10
Introducing Azure AD B2C	12
Using social accounts and local accounts	12
Benefiting from multi-factor authentication	13
Leveraging friction-free out-of-the-box user experiences	13
Customizing the overall user experience	21
Seamlessly integrating your consumer facing applications	23
Programmatically managing your users	36
Getting started with Azure AD B2C	38
Getting an Azure subscription	38
Creating an Azure AD B2C directory	39
Configuring the local account provider	44
Configuring social identity providers	45
Registering an application on your B2C tenant	57
Creating policies using default user journeys	59
Configuring and running a sample application	70
Viewing the users of the B2C tenant	81
Adding Multi-Factor Authentication	82
Resetting a local account password	84
Collecting additional information during sign-up	87
A sneak peak of what’s coming next	91

[bookmark: _Toc421898208][bookmark: _Toc421898209][bookmark: _Toc454545260]Notice
This document illustrates new capabilities of Azure AD through the just made available public preview of the new Azure AD B2C service. This public preview may be substantially modified before GA.
Microsoft makes no warranties, express or implied, with respect to the information provided here.
This document will be updated to reflect the changes introduced at GA time.
[bookmark: _Toc454545261]Introduction
Ongoing digital relationships and connectivity with people and things are fundamental to the success of today’s organizations.
Identity is the foundational technology enabling this. Regardless of their size, organizations need a single way to do identity, whether it be for employees, customers, partners or devices. Anything must be able to have a digital relationship - and connect to anything else.
Azure Active Directory (Azure AD) is Microsoft’s vehicle for responding to this requirement by providing Identity Management as-a-Service (IDaaS) capabilities in a cloud or hybrid environment.
By leveraging efficiencies of the cloud and automation to get efficiencies in identity, IDaaS service can:
· Offer all the necessary security and privacy capabilities – while maintaining usability.
· Provide a business centric portal for configuring identity services.
· Sustain easy-to-integrate/easy-to-customize (self-services) identity experiences.
· And finally cut costs thanks to superior cloud economics.
These requirements and capabilities will drive almost all organizations to subscribe to identity services that are cheaper, broader in scope, more unifying and more capable than the systems of today.
Because of its enterprise relationships, and its early commitment to build an enterprise grade identity service at cloud scale, Microsoft’s approach to IDaaS is deeply grounded in – and extends – the proven concepts of on-premises Active Directory (AD).
AD is a Microsoft brand for identity related capabilities. Microsoft has earned widespread adoption of its on-premises identity technology, a suite of capabilities packaged and branded as Windows Server Active Directory (WSAD or simply AD).
In the on-premises world, AD provides a set of identity capabilities. AD is used extensively by governments and enterprises world-wide. AD is widely deployed in the Fortune 1000 and the Global 5000 today as their authoritative identity and access management system as well as in small and medium enterprises and we will not describe it further except to underline one essential point: to meet the requirements of hybrid deployment AD can be extended into public clouds and/or into private clouds.
Azure AD is AD reimagined for the cloud, hardened for the realities and dangers of the cloud environment, and designed to help you solving the new identity and access challenges that come with the shift to a cloud-centric world.
Azure AD is a comprehensive identity and access management cloud solution, utilizing the enterprise-grade quality and proven capabilities of AD on-premises. It combines core directory services, advanced identity governance, security and analytics, and application access management.
Azure AD has been designed to easily extend AD (in whole or in part) into the public Azure cloud[footnoteRef:2] as a directory whose content is owned and controlled by the organization providing the information. [2: Microsoft Azure is a flexible and open cloud computing platform hosted in Microsoft datacenters delivering scalable and reliable Internet-scale services. As an Infrastructure as-a-Service (IaaS) platform, Microsoft Azure Infrastructure Services enables to deploy (complex) workloads (servers, networking and storage infrastructure) in the cloud that you can control and manage on your terms. Also, as a Platform as-a-Service (PaaS) platform, it includes a number of features, which can be used individually or composed together in a public or hybrid cloud fashion.]

Azure AD is NOT a monolithic directory of information belonging to Microsoft, but rather different directories belonging to and completely controlled by different organizations. This architecture and commitment is called “multi-tenant[footnoteRef:3]” and great care has been provided to insulate tenants (organizations) from each other and from their service operator – Microsoft. Azure AD is a vast network of independent identity systems and directories owned by organizations. [3: A “tenant” is directory operated by an organization]

Azure AD is indeed trusted by millions of organizations serving hundreds of millions of identities for access to Software as a Service (SaaS) applications, including Office 365 and thousands of other partner applications.
We have indeed re-engineered AD[footnoteRef:4] [footnoteRef:5], to support massive scale, devices based on any operating system or architecture, modern business applications[footnoteRef:6], modern protocols, high availability, and integrated disaster recovery. Azure AD is delivered in a highly-available, fault-tolerant architecture from over 28 regions worldwide. [4: REIMAGING ACTIVE DIRECTORY FOR THE SOCIAL ENTERPRISE (PART 1): http://blogs.msdn.com/b/windowsazure/archive/2012/05/23/reimagining-active-directory-for-the-social-enterprise-part-1.aspx] [5: REIMAGING ACTIVE DIRECTORY FOR THE SOCIAL ENTERPRISE (PART 2): http://blogs.msdn.com/b/windowsazure/archive/2012/06/20/reimagining-active-directory-for-the-social-enterprise-part-2.aspx] [6: Modern business applications: http://www.microsoft.com/en-us/server-cloud/cloud-os/modern-business-apps.aspx]

Note	Since its introduction, Azure AD "has handled 400 billion identity authentications in Azure AD"[footnoteRef:7]. "We have 350 million Azure Active Directory users. […] We actually process 4 billion, with a B, authentications every week with Azure Active Directory"[footnoteRef:8]. This is a real testament to the level of scale we can handle. “At a high level, Azure AD is a high availability, geo-redundant, multi-tenanted, multi-tiered cloud service that has delivered 99.99% uptime for over a year now. We run it across 28[footnoteRef:9] datacenters around the world. Azure AD has stateless gateways, front end servers, application servers, and sync servers in all of those data centers. Azure AD also has a distributed data tier that is at the heart of our high availability strategy. Our data tier holds more than 500 million objects and is running across 13 data centers.”[footnoteRef:10] [7: MICROSOFT BY THE NUMBERS: THE ENTERPRISE CLOUD (October 2014): http://news.microsoft.com/cloud/ms_numbers.pdf] [8: JASON ZANDER AND JOE BELFIORE: TECHED EUROPE 2014: http://news.microsoft.com/speeches/jason-zander-and-joe-belfiore-teched-europe-2014/] [9: AZURE AD IS LIVE IN HONG KONG!: http://blogs.technet.com/b/ad/archive/2014/10/06/azure-ad-now-live-in-hong-kong.aspx] [10: AZURE AD: UNDER THE HOOD OF OUR GEO-REDUNDANT, HIGHLY AVAILABLE, DISTRIBUTED CLOUD DIRECTORY: http://blogs.technet.com/b/ad/archive/2014/09/02/azure-ad-under-the-hood-of-our-geo-redundant-highly-available-geo-distributed-cloud-directory.aspx]

Given the numbers cited in this note and its track record since we first talked about it in November 2011, Azure AD has shown itself to be a robust identity and access management service for Microsoft cloud services. No other cloud directory offers this level of enterprise reliability or proven scale.
Furthermore, last year, Gartner in their Magic Quadrant (MQ) for Identity Management as a Service (IDaaS) [Gartner, June 2015] has placed Azure AD after its only first year of availability in the “Visionaries” MQ. As of this writing, Gartner has just released their MQ for IDaaS for 2016 [Gartner June 2016] and Azure AD Premium has been placed in the “Leaders” quadrant, and positioned very strongly for our completeness of vision.
[image:]
Important note	The above graphic was published by Gartner, Inc. as part of the larger research document - a complimentary access is provided here[footnoteRef:11]- and should be evaluated in the context of the entire document. Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner's research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose. [11: MICROSOFT RECOGNIZED IN LEADER QUADRANT OF GARTNER’S MAGIC QUADRANT FOR IDENTITY AND ACCESS MANAGEMENT AS A SERVICE, WORLDWIDE: https://info.microsoft.com/EMS-IDaaS-MQ-2016.html]

As Alex Simons, Director of Program Management, Microsoft Identity and Security Services Division, says, “we’re thrilled with the result. It really validates our vision of providing a complete solution for hybrid identity and access for supporting employees, partners and customers all backed by world class security based on Microsoft’s intelligent security graph. This result says a lot about our commitment in the identity and access management space but more importantly about our customers, implementation partners and ISV partners who have worked together with us. They have been awesome about sharing their time and energy every day, to make sure that the products and services we build meet their needs and are helping them position their companies to thrive in the emerging world of cloud and devices.
You might be surprised to know that Microsoft also is the only vendor in the Leader quadrant across Gartner’s Magic Quadrants for IDaaS, Cloud Infrastructure as a Service (IaaS), Server Virtualization, Application Platform as a Service, Cloud Storage Services, and as a leader across the data platform and productivity services. This really shows you why customers are choosing Microsoft across the full spectrum of cloud computing – our services are well integrated and also among the best available in their individual categories.”[footnoteRef:12] [12: #AZUREAD A LEADER IN THE 2016 GARTNER IDAAS MQ!: https://blogs.technet.microsoft.com/enterprisemobility/2016/06/07/azuread-a-leader-in-the-2016-gartner-idaas-mq/]

Note	For information on the available Azure AD editions, see later in this document and/or the MSDN article AZURE ACTIVE DIRECTORY EDITIONS[footnoteRef:13]. For information on usage model, see the Microsoft MSDN article AZURE ACTIVE DIRECTORY PRICING[footnoteRef:14]. [13: AZURE ACTIVE DIRECTORY EDITIONS: http://msdn.microsoft.com/en-us/library/azure/dn532272.aspx] [14: AZURE ACTIVE DIRECTORY PRICING: http://azure.microsoft.com/en-us/pricing/details/active-directory/]

Alex Simons adds: “our effort doesn’t stop here. We have a lot of hard work ahead of us and we are planning to deliver more innovative capabilities to further improve our position in the “leaders” quadrant.”[footnoteRef:15]. [15: #AZUREAD A LEADER IN THE 2016 GARTNER IDAAS MQ!: https://blogs.technet.microsoft.com/enterprisemobility/2016/06/07/azuread-a-leader-in-the-2016-gartner-idaas-mq/]

In this context, Azure AD extends its capabilities to embrace identity management (IDM) of individual consumers with a new service for Business-to-Consumer: Azure AD B2C, now in public preview[footnoteRef:16]. [16: AZURE AD B2C AND B2B ARE NOW IN PUBLIC PREVIEW!: http://blogs.technet.com/b/ad/archive/2015/09/09/azure-ad-b2c-and-b2b-are-now-in-public-preview.aspx]

Azure AD B2C is a comprehensive, cloud-based, consumer identity management solution for your consumer-facing applications that can be easily integrated into any platform and accessed from any device.
Note	For a short introduction, watch the video AZURE AD AND IDENTITY SHOW: AZURE AD B2C (BUSINESS TO CONSUMER)[footnoteRef:17]. [17: AZURE AD AND IDENTITY SHOW: AZURE AD B2C (BUSINESS TO CONSUMER): http://aka.ms/aadshowb2c]

This service is free of charge during the public preview period. It will be available at GA on a pay-as-you-go (PAYG) basis. The first 50,000 consumer identities will be free, and when you will have more end users and traffic to your consumer-facing application(s), a fraction of a cent per stored identity and authentication will be charged.
Note	For more information on usage model, see the article AZURE ACTIVE DIRECTORY B2C PRICING[footnoteRef:18]. [18: AZURE ACTIVE DIRECTORY B2C PRICING: http://azure.microsoft.com/en-us/pricing/details/active-directory-b2c/]

[bookmark: _Toc345417162][bookmark: _Toc421898210][bookmark: _Toc454545262]Objectives of this paper
This document is intended as an overview document for discovering and understanding the benefits of Azure AD B2C[footnoteRef:19], and how your application can leverage this new service. [19: Azure Active Directory B: http://azure.microsoft.com/en-us/services/active-directory-b2c/]

While much of the technology of Azure AD must remain the same (e.g. directory), the IDM of employees and IDM of consumers also have many different requirements – thus the need for technologies that interact but are honed to specific problems. To master these requirements, Microsoft has worked closely with a number of customers in private preview. Some of the private preview deployments are already fully in Production.
Built on existing Microsoft’s documentation, knowledge base articles, and blog posts, this document provides a complete walkthrough to test, and evaluate Azure AD B2C. It provides additional guidance if any.
Note	You can also share your thoughts on the Azure AD B2C using User Voice[footnoteRef:20] with the phrase "AzureADB2C:" in the title of your post so that it can be found. [20: Azure Active Directory forum: http://feedback.azure.com/forums/169401-azure-active-directory]

[bookmark: _Ref338075720][bookmark: _Ref338075725][bookmark: _Toc345417163][bookmark: _Toc421898211][bookmark: _Toc454545263]Non-objectives of this paper
[bookmark: _Ref199150767][bookmark: _Ref199150773]This document is not intended as an overview document for the Azure AD offerings but rather focusses on this new Azure AD B2C identity service.
Note	For additional information, see the Microsoft MSDN article GETTING STARTED WITH AZURE AD[footnoteRef:21]. As well as the whitepapers ACTIVE DIRECTORY FROM THE ON-PREMISES TO THE CLOUD[footnoteRef:22] and AN OVERVIEW OF AZURE AD[footnoteRef:23] as part of the same series of documents. [21: GETTING STARTED WITH AZURE AD: http://msdn.microsoft.com/en-us/library/dn655157.aspx] [22: ACTIVE DIRECTORY FROM THE ON-PREMISES TO THE CLOUD: http://www.microsoft.com/en-us/download/details.aspx?id=36391] [23: AN OVERVIEW OF AZURE AD: http://www.microsoft.com/en-us/download/details.aspx?id=36391]

Likewise, it doesn’t provide either in-depth description on how to implement a specific covered feature or capability. Where necessary, it instead refers to more detailed documents, articles, and blog posts that describe a specific feature or capability.
Note	Please make sure you periodically check the Azure AD B2C preview FAQ[footnoteRef:24], Azure AD community forum[footnoteRef:25] as well as the Active Directory Team blog[footnoteRef:26] for notification of upcoming enhancement and changes that pertain to Azure AD. [24: AZURE ACTIVE DIRECTORY B2C PREVIEW: FAQS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-faqs/] [25: Azure Active Directory community forum: http://social.msdn.microsoft.com/Forums/en-US/WindowsAzureAD/] [26: Active Directory Team blog: http://blogs.technet.com/b/ad/]

[bookmark: _Toc345417164][bookmark: _Toc421898212][bookmark: _Toc454545264]Organization of this paper
To cover the aforementioned objectives, this document is organized in the following four sections:
· SUPPORTING BUSINESS-TO-CONSUMER SCENARIOS.
· INTRODUCING AZURE AD B2C.
· GETTING STARTED WITH AZURE AD B2C.
· A SNEAK PEAK OF WHAT’S COMING NEXT.
These sections provide the information details necessary to understand the new capabilities introduced in Azure AD for Business-to-Consumer (B2C) scenarios, and successfully evaluate the already available features as per the currently available public preview.
[bookmark: _Toc278806086][bookmark: _Toc345417165][bookmark: _Toc421898213][bookmark: _Toc454545265]About the audience
This document is intended for IT professionals, system architects, and developers who are interested in understanding how Azure AD B2C help managing identities for their consumer-facing application(s) in their (hybrid) cloud environment and how to leverage the related features.
[bookmark: _Ref430683859][bookmark: _Toc454545266]Supporting Business-to-Consumer scenarios
[bookmark: _Toc454545267]Managing identities at scale
It is evident that enterprises and governments will use their (hybrid) IDaaS services to manage the authentication and authorization of internal employees.
But in the outward looking world that is emerging so quickly it will be just as important to manage access to services by an organization’s supply chain, its customers (including individuals), its leads and prospects. In the same way, governments will benefit from these services when interacting with other government agencies, enterprises and citizens.
Today, enterprises and governments struggle to manage the accounts, credentials and entitlements of their huge populations of external users that are not well served by existing identity and access control systems.
From an organization’s perspective, this population of “external users” represents all the people who interact with its online applications and APIs, but who are not directly members of the organization itself. Consumers, customers, clients, citizens, retirees, partners, etc. are chief amongst them. Typical populations of these “external users” dwarf the size of an organization’s internal workforce.
Current best practices – maintaining local accounts and passwords – can lead to debilitating financial and personnel costs, and front-page security and privacy disasters. The on-premises solutions in place to sustain the above interactions indeed face a multitude of challenges.
This obviously starts with the security and privacy risks that must be adequately addressed when storing credentials and personally identify information (PII)/ or sensitive personal information (SPI) in various application databases.
From an implementation standpoint, organizations typically have to cope with heterogeneous stove-piped identity systems that are custom built, acquired from 3rd parties, part of legacy systems, etc. along with different data types and formats, different types of extensibility/states of modifications possible, different application platforms and systems (and even blurred system boundaries), etc.
Beyond the subsequent lack of a unified view, this usually results in high total cost of ownership (TCO) with not only the software licensing, maintenance, and upgrade costs implied with such an on-premises infrastructure but also with 7 x 24 operations and the support staff required to ensure the service.
This leads both to quality of service (QoS) challenges (given the absence of a high availability and/or disaster recovery infrastructure) and a lack of scalability (up to millions of these “external users”) since legacy systems have no elasticity when it comes to demand spikes.
Organizations need a specialized service that handle identity at the appropriate scale while assuring the necessary security and privacy. – This demands an increased level of specialization and professionalization adequate to emerging cyber threats. Once this is understood it becomes obvious why you get more capability for less money by leveraging cloud capabilities.
A specialized identity service directly attacks the above challenges – simplifying life for enterprises, ISVs, government agencies and their “external identities”.
Kim Cameron, Microsoft Chief Identity Architect, is convinced that “organizations will find they need new identity management capabilities to take full advantage of the cloud and integrate cloud services with their on-premises environment. They will also find that the most reliable and cost-effective way to obtain these capabilities is through using the cloud to master the cloud.”
[bookmark: _Toc454545268]Extending Azure AD for external identities
In addition to managing their employees and mobile workforce access the required SaaS and (cloud-based, hybrid, and on-premises) Line-Of-Business (LOB) applications, Azure AD can help organizations manage their external users, and thus deliver (web and mobile) applications, such as a retail store front to consumers.
Note	The word “consumer” is used here to refer to the ultimate consumer, customer, client, citizen, retiree, or a supporter of a business, government or charity, someone who is acting as an individual, and not as a
This is what the new service Azure AD B2C should be used for to meet the growing needs organizations looking to connect their consumers via such applications. In the aforementioned research document[footnoteRef:27], Gartner says that “B2C use cases have grown in importance as organizations look to replace a mixture of custom-developed IAM products and traditional on-premises IAM products”. [27: MAGIC QUADRANT FOR IDENTITY AND ACCESS MANAGEMENT AS A SERVICE, WORLDWIDE: https://info.microsoft.com/Gartner-Magic-Quadrant-EMS.html?ls=Website]

While much of the technology of Azure AD must remain the same (e.g. directory), Azure AD B2C allows to accommodate many different requirements – thus the need for technologies that interact but are honed to specific problems. In fact, the Azure AD and Azure AD B2C services can be thought of as a continuum, so approaches need to be able to be mixed and deployed flexibly.
[bookmark: _Toc454545269]Understanding Azure AD B2C key objectives
Azure AD B2C is designed to solve the identity management challenges that have emerged, as economic and competitive pressures drive commercial enterprises, ISVs, educational institutions, and government agencies to shift their service delivery channels from face-to-face engagements to online web applications, web API, as well as native mobile applications.
Azure AD B2C extends Azure AD to deliver all of the functionality required of a cloud era IDaaS solution for connecting all your consumer-facing modern applications[footnoteRef:28], that can be integrated in any platform, and accessible from any device. [28: Modern business applications: http://www.microsoft.com/en-us/server-cloud/cloud-os/modern-business-apps.aspx]

Azure AD B2C acts on behalf of a consumer-facing application (aka relying party or RP) by automating and managing all the mechanisms through which it obtains digital identity information to enable the RP to make informed access control and personalization decisions about a transaction requested by an external user. Consequently, Azure AD B2C supports a spectrum of identity services from high security (e.g. phone-based multi-factor authentication) to satisfy organizational “Know Your Consumer” (KYC) requirements.
Azure AD B2C has characteristics shaped by the importance of identity for both the protection of assets and the enhancement of relationships as we enter the era of the social enterprise. There is general agreement on the need to provide individuals and organizations with more “secure, efficient, easy-to-use, and interoperable identity solutions to access online services in a manner that promotes confidence, privacy, choice, and innovation”.
Azure AD B2C service has been developed out of a broad dialog internationally and in conformance with requirements from a great many expert sources in government and industry, and is being exercised in multiple pilots globally, and even more like with the Real Madrid, the #1 sports franchise in the world, that needed to directly engage with its 450 million fans:
“For user authentication and profile storage, the solution uses a preview version of the Azure Active Directory Business to Consumer (B2C) identity service. Fans get simplified registration and login through use of social accounts like Facebook, or they can use traditional username/passwords for a seamless experience across mobile applications on any platform. Using a standard service built on the established Azure Active Directory platform significantly reduced custom code while giving Real Madrid customized branding and alleviating concerns about security, data breaches, and scalability.”[footnoteRef:29] [29: REAL MADRID C.F. REAL MADRID BRINGS THE STADIUM CLOSER TO 450 MILLION FANS AROUND THE GLOBE, WITH THE MICROSOFT CLOUD: https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=20522]

Azure AD B2C can scale to large populations (up to hundreds of millions per organization) of consumers and is built on the same enterprise-grade (high-availability, geo-redundant, secure, etc.) Azure AD technology platform that supports Office 365. Built on an enterprise-grade secure platform, Azure AD B2C keeps your business and your consumers protected.
Note	The freely available public preview of Azure AD B2C is currently limited to 50,000 users per directory. However, organizations with greater needs are invited to contact us to work out special arrangements.
As of this writing, the Basic edition of Azure AD B2C is currently available in public preview. This edition will be simply referred as Azure AD B2C in the rest of this document.
[bookmark: _Ref430683864][bookmark: _Toc454545270]Introducing Azure AD B2C
Considering all the objectives outlined in the previous section, the features of Azure AD B2C included at public preview are articulated around five main pillars:
1. Social and local account.
2. Multi-factor authentication.
3. Sign up, sign in, password reset and profile editing.
4. User experience customization.
5. Seamless integration for development.
Let’s consider them in the next sections where a specific section will be devoted to each pillar.
Note 	For information on the limitations and restrictions of the public preview, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: LIMITATIONS & RESTRICTIONS[footnoteRef:30]. [30: AZURE ACTIVE DIRECTORY B2C PREVIEW: LIMITATIONS & RESTRICTIONS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-limitations/]

As a whole, these pillars enable Azure AD B2C to provide a unified view of the consumer (sign up, sign in, and profile editing) across all the consumer facing applications exposed by your organization.
[bookmark: _Ref430714565][bookmark: _Toc454545271]Using social accounts and local accounts
For consumers, social media is emerging as a key source of identity. Real world examples of this include organizations that have internet-centric business models. Consider music download sites such as Spotify that allow users to login using their Facebook identities make it far easier for users to sign up.
Furthermore, usage of social identities appears to be expanding into more conservative areas; for example, the UK government has evaluated Facebook as part of the Identity Assurance (IDA) program[footnoteRef:31], a way of better enabling secure transactions between public sector bodies and citizens. [31: UK Cabinet Office Web site, Identity assurance: enabling trusted transactions: http://www.cabinetoffice.gov.uk/resource-library/identity-assurance-enabling-trusted-transactions]

At the same time these changes present new challenges for the consumer-facing applications (both on-premises and in the cloud) that represent identity lifecycle management, provisioning, role management, authentication and security of users and devices requiring granular access. The net result is to propel identity to first rank of importance.

In terms of authentication to a consumer-facing application, Azure AD B2C gives end users a choice between:
· “Bringing their own Identities” (BYOI) by using one of their existing social accounts, such as Amazon, Facebook, Google+, LinkedIn, or Microsoft Account (MSA),
-or-
· Creating a new local account (arbitrary email address / username with password).
Beyond local accounts, enabling BYOI ensures user adoption, given that there are millions of consumer identities in use today from the aforementioned social identity providers and end users are more likely to remember a password they use daily rather than a few times a year.
[bookmark: _Toc454545272]Benefiting from multi-factor authentication
Enabling BYOI is only the first part of the solution. Clearly these social identities are self-asserted and of such low identity assurance that they are not sufficient to authorize access to valuable or sensitive information.
To address this concern, Azure AD B2C can improve organizational security by requiring end users to employ an additional authentication method when the use case warrants it. Azure AD B2C indeed allows organizations to seamlessly benefit from an optional (phone-based) multi-factor authentication whenever needed.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: ENABLE MULTI-FACTOR AUTHENTICATION IN YOUR CONSUMER-FACING APPLICATIONS[footnoteRef:32]. [32: AZURE ACTIVE DIRECTORY B2C PREVIEW: ENABLE MULTI-FACTOR AUTHENTICATION IN YOUR CONSUMER-FACING APPLICATIONS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-mfa/]

This authentication is based on Azure Multi-Factor Authentication[footnoteRef:33]. [33: Azure Multi-Factor Authentication: http://azure.microsoft.com/en-us/services/multi-factor-authentication/]

Note	For additional information, see the related documentation[footnoteRef:34] as well as the whitepaper LEVERAGE MULTI-FACTOR AUTHENTICATION WITH AZURE AD[footnoteRef:35] in the same series of document. [34: WHAT IS AZURE MULTI-FACTOR AUTHENTICATION?: https://azure.microsoft.com/en-us/documentation/articles/multi-factor-authentication/] [35: LEVERAGE MULTI-FACTOR AUTHENTICATION WITH AZURE AD: http://www.microsoft.com/en-us/download/details.aspx?id=36391]

[bookmark: _Toc454545273]Leveraging friction-free out-of-the-box user experiences
To make it easy for your external users to get to your consumer-facing application(s), Azure AD B2C is as its core a flexible, policy-based, data-driven identity exchange service that orchestrates authentication with attribute requests. In this context, a flexible policy framework provides granular control over seamless user experiences and behaviors for your consumer-facing applications.
This policy framework allows the creation of these enterprise-level policies. These policies enable you to instantiate/refine supported out-of-the-box (OOB) user experiences or journeys for the consumer facing-applications.
Understanding the supported OOB user journeys
Let’s see how this works starting from the supported OOB user journeys, and what can be defined and configured.
Azure AD B2C supports the following five OOB user journeys: i) self-service sign-up (Sign-up), ii) single sign-on (Sign-in), iii) sign-up or sign-in (Sign-up or Sign-in), iv) profile editing (Edit your profile), and v) self-service password reset (Reset your password) for local accounts.
These OOB user journeys encompass as series of actions in sequence in terms of authentication and information collection.
As such, the Sign-up user journey provides self-service consumer registration. It allows the end user to:
· Choose a social identity provider to sign in (or) create a new local account.
· Sign in with social provider (or) create a new ‘local account’ with email address verification and request additional information from the user.
· Collect additional information if user signed in with social identity provider.
· Collect a phone number from the user and do a phone challenge via SMS or voice if multi-factor authentication is enabled.
Likewise, the Sign in user journey basically allows the end user to:
· Choose a social identity provider (or) a ‘local account’ to sign in.
· Sign in with social identity provider (or) local account.
· Do a phone challenge if multi-factor authentication is enabled.
Note	A phone number will be collected if no number is present in the B2C tenant for the user. (See later in this document).

Note	Self-service password reset (SSPR) management can be provided for local accounts as part of the Sign in journey.
Above steps are skipped if the user is already signed in.
Based on the above journeys, the unified” Sign-up or Sign-in journey indeed allows the end user to switch into Sign-up mode the first time the end user employs a social identity.
The Edit your profile journey provides self-service capabilities such as self-service profile management. It notably allows to:
· Choose a social identity provider (or) ‘local account’ to sign in.
· Sign-in with social identity provider (or) local account.
· Do a phone challenge via text message or voice if multi-factor is enabled and phone number is on file.
Steps are skipped if already signed in.
And eventually, the Reset your password journey provides self-service capabilities such as self-service password resets for local accounts. To get back a local account, it notably allows to:
· Specify a local account id.
· Receive an account verification code email to the verified email address of the local account.
· Reset the password upon successful verification of the code.
Defining the related enterprise-level policies
As introduced above, from a practical standpoint, these OOB user journeys are defined through related enterprise-level policies created through a policy framework. As such, a corresponding policy category is provided for each type of supported OOB user journeys, i.e. i) sign-up policy, ii) sign-in policy, iii) sign-up or sign-in policy, iv) profile editing policy, and v) password reset policy.
From an application perspective, the developer just redirects to B2C specifying which policy he wants and gets back the authenticated result of the journey as a set of claims with zero app complexity. (see section later in this document). All of the logic resides in the policy and is orchestrated by Azure AD B2C’s Identity Experience Engine. You don’t need to code any of this.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK[footnoteRef:36]. [36: AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-policies/]

Considering the above, a sign-up policy enables sign-up in your application and allows:
· The selection of social identity providers from which the user can sign in form during sign up,
· The selection of sign up attributes that you want to collect from the user during sign up.
Note	Sign up attributes can be built-in user attributes and/or custom user attributes via an extensible directory schema,
· The selection of application claims that you want returned in the tokens back to your application after a successful sign up journey,
· The optional use of optional use of multifactor authentication during sign up,
· The UI customization for (most of) the pages served by Azure AD B2C to sustain the user interaction. (See section CUSTOMIZING THE OVERALL USER EXPERIENCE.)
Likewise, a sign-in policy enables sign-in in your application and allows:
· The selection of social identity providers from which the user can sign in form during sign in,
· The selection of application claims that you want returned in the tokens back to your application after a successful sign in journey,
· The optional use of multifactor authentication during sign in,
· The UI customization for (most of) the pages served by Azure AD B2C to sustain the user interaction. (See section CUSTOMIZING THE OVERALL USER EXPERIENCE.)
A “unified” sign-up or sign-in policy enables sign-up or sign-in in your application. Typically, an application provides two separate buttons for sign up and sign in that users have to pick from. With “unified” sign-up or sign-in policy, your application can provide a single click experience for sign up or sign in based on context. When both new and existing end-users click on a button called “Join / Sign in” they are given the choice to:
· Sign in with a social identity provider
· Sign in with an existing local account.
· Create a new local account.
For that purpose, “unified” sign-up or sign-in policy allows all what the aforementioned policies allow. In addition, the UI on every page of this experience served by Azure AD B2C is fully customizable. (See section CUSTOMIZING THE OVERALL USER EXPERIENCE.)
A profile editing policy allows:
· The selection of attributes,
· The selection of application claims,
· The UI customization for (most of) the pages served by Azure AD B2C to sustain the user interaction. (See section CUSTOMIZING THE OVERALL USER EXPERIENCE.)
And eventually, a reset password policy allows to create and use multiple, fully customizable password reset experiences. This means that all applications don’t have to share a single common password reset experience. The UI on every page of this experience served by Azure AD B2C is fully customizable. (See section CUSTOMIZING THE OVERALL USER EXPERIENCE.)
Policies have a consistent “developer” interface that allows a graphical and fully guided definition of the policies. Azure AD B2C supports the live run of the policy straight from the UI to test the policy without a single line of code.
Even more interestingly, policies are units of re-use for applications. In other words, such policies once created typically constitute reusable user journeys. You can create multiple policies of the same type and use any policy in any application at runtime.
[image:]
Indeed, policies can be articulated on an application by application basis. In other words, a registered consumer facing-application can then in turn adhere to them – one policy per type of user journey - thus enabling to drive the application compliance.
You invoke them in your application using standard identity protocol requests to Azure AD B2C and you receive tokens with claims (customized by you) as responses. (See section SEAMLESSLY INTEGRATING YOUR CONSUMER FACING APPLICATIONS.)

To ease the re-use and the modification of policies, policies can be exported and downloaded from the UI as an XML file. The following code snippet illustrates a sign-up policy named B2C_1_B2CSignUp.

<TrustFrameworkPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.microsoft.com/online/cpim/schemas/2013/06"
 PolicySchemaVersion="0.3.0.0"
 TenantId="contoso369b2c.onmicrosoft.com"
 PolicyId="B2C_1_B2CSignUp"
 PublicPolicyUri="http://contoso369b2c.onmicrosoft.com/">
 <BasePolicy>
 <TenantId>contoso369b2c.onmicrosoft.com</TenantId>
 <PolicyId>base-v1</PolicyId>
 </BasePolicy>
 <ClaimsProviders>
 <ClaimsProvider>
 <DisplayName>PhoneFactor</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="PhoneFactor-Common">
 <EnabledForUserJourneys>OnClaimsExistence</EnabledForUserJourneys>
 </TechnicalProfile>
 </TechnicalProfiles>
 </ClaimsProvider>
 <ClaimsProvider>
 <DisplayName>Self Asserted</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="SelfAsserted-Input">
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="state" />
 <InputClaim ClaimTypeReferenceId="postalCode" />
 <InputClaim ClaimTypeReferenceId="extension_LoyaltyNumber" />
 <InputClaim ClaimTypeReferenceId="city" />
 <InputClaim ClaimTypeReferenceId="displayName" />
 </InputClaims>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="state" />
 <OutputClaim ClaimTypeReferenceId="postalCode" />
 <OutputClaim ClaimTypeReferenceId="extension_LoyaltyNumber" />
 <OutputClaim ClaimTypeReferenceId="city" />
 <OutputClaim ClaimTypeReferenceId="displayName" />
 </OutputClaims>
 </TechnicalProfile>
 </TechnicalProfiles>
 </ClaimsProvider>
 <ClaimsProvider>
 <DisplayName>Azure Active Directory</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="AAD-WriteCommon">
 <PersistedClaims>
 <PersistedClaim ClaimTypeReferenceId="state" />
 <PersistedClaim ClaimTypeReferenceId="postalCode" />
 <PersistedClaim ClaimTypeReferenceId="extension_LoyaltyNumber" />
 <PersistedClaim ClaimTypeReferenceId="city" />
 <PersistedClaim ClaimTypeReferenceId="displayName" />
 </PersistedClaims>
 </TechnicalProfile>
 </TechnicalProfiles>
 </ClaimsProvider>
 </ClaimsProviders>
 <UserJourneys>
 <UserJourney Id="B2CSignUp">
 <OrchestrationSteps>
 <OrchestrationStep Order="1"
 Type="ClaimsProviderSelection"
 ContentDefinitionReferenceId="api.idpselections.signup">
 <ClaimsProviderSelections>
 <ClaimsProviderSelection TargetClaimsExchangeId="GoogleExchange" />
 <ClaimsProviderSelection TargetClaimsExchangeId="SignUpWithLogonEmailExchange" />
 <ClaimsProviderSelection TargetClaimsExchangeId="FacebookExchange" />
 </ClaimsProviderSelections>
 </OrchestrationStep>
 </OrchestrationSteps>
 </UserJourney>
 </UserJourneys>
 <RelyingParty>
 <DefaultUserJourney ReferenceId="B2CSignUp" />
 <TechnicalProfile Id="PolicyProfile">
 <DisplayName>PolicyProfile</DisplayName>
 <Protocol Name="OpenIdConnect" />
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="state" />
 <OutputClaim ClaimTypeReferenceId="objectId" />
 <OutputClaim ClaimTypeReferenceId="postalCode" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" />
 <OutputClaim ClaimTypeReferenceId="extension_LoyaltyNumber" />
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="emails" />
 <OutputClaim ClaimTypeReferenceId="city" />
 <OutputClaim ClaimTypeReferenceId="sub" />
 </OutputClaims>
 <SubjectNamingInfo ClaimType="sub" />
 </TechnicalProfile>
 </RelyingParty>
</TrustFrameworkPolicy>

If you want to, such an XML file can then serve as a template to define a new policy.
Illustrating the provisioning workflow
Considering the above, let’s illustrate a typical logical provisioning workflow. Let’s suppose that, at this stage, your organization is in the process to define, create and deploy suitable policies for its App1 consumer-facing application.
The workflow is as follows:
[image:]
1. Security and business analysts at your organization determine the user requirements and security constraints for their App1 consumer-facing application. For example, business analysts might want to reduce user drop off by leveraging social identities but require step-up authentication when the application needs increased assurance. OUTCOME: Determination that multiple steps are required for a suitable sign-up policy, one for the initial social identity login and a second one for the step-up authentication which requires stronger authentication and registration details. Same is true for the sign-in policies where they also want to have a second authentication factor in addition to the login at the social identity provider.
2. An administrator of your organization, maybe yourself, accesses the Azure AD B2C in the Azure portal and defines a sign-up policy B2CSignUp-A, selecting social identity providers, the required attributes to satisfy organizational “Know Your Customer” (KYC) requirements, the needed claims to send in turn, and the additional authentication factor. The administrator does the same with the definition of a sign-on policy B2CSignIn-1, selecting social identity providers, the required claims to send to the application, and the additional authentication factor. AOUTCOME: Organization’s administrator has generated 2 policies, one for B2CSignUp-1 and one for B2CSignIn-1.
3. Your organization’s developers build or update the App1 consumer-facing application and integrate with Azure AD B2C by doing simple web redirection (see later in this document). In our example, for the initial user journey for signing-up, the App1 application does a redirect to Azure AD B2C passing the B2CSignIn-1 policy to honor in the query string of the URL. When the application requires to sign-in, the App1 application does a redirect to Azure AD B2C with the B2CSignIn-1 policy in the URL. OUTCOME: Azure AD B2C will orchestrate the application requests according to the different policies and the required claims will be returned to the App1 application.
4. The developers use the claims that are posted back to their App1 application by Azure AD B2C in order to personalize and authenticate their application.
5. Your organization deploys the App1 consumer-facing application to a production environment.
Let’s see how Azure AD B2C orchestrates and enforces the above policies at runtime.
Illustrating the resulting orchestration at runtime
The Azure AD B2C policy enforcement engine receives a redirect from your App1 consumer-facing application which includes the B2CSignUp-1 policy to orchestrate, which in turn enforces it at runtime. The following example illustrates how Azure AD B2C orchestrates the various implied requests and operations to establish the claims as required by a sign-up policy:
[image:]
1. The user is redirected to the social identity provider, in this case Facebook. If authentication succeeds the returned token is cached and orchestration continues to the second authentication factor, as dictated by the policy.
2. The user is taken through the process of binding a second factor to the account. Once a second authentication factor is bound to an account, it can then be used to challenge the user. As of this writing, a proof of possession of a phone could be used, using Azure Multi-Factor Authentication.
3. On successful verification of the second factor, the orchestrator initiates the registration process where the user self-asserts information. For that purpose, Azure AD B2C displays a policy-based customized UI for collecting from the user a specific set of built-in or custom ones.
Once all the requirements of the policy are met, Azure AD B2C returns as per sign-up policy the configured set of claims for the App1 application to evaluate. The App1 application may in turn confirm that the received set of claims match a dataset in its authoritative system of record, and if so, can use accordingly the now “verified” claims.
As a final step in the elevation flow, the App1 application may use the “verified” claims received to put the user through a final out of band proof process. Such a process can for instance consist in sending address confirmation mail to the user at the “verified” postal address. In the case of the above illustration, a confirmation code is simply sent by email.
[bookmark: _Ref430714524][bookmark: _Toc454545274]Customizing the overall user experience
UI customization for a relating seamless user experience is key for any Business-to-Consumer solution. By seamless user experience, we mean an experience, whether on device or browser, where a user’s journey through our service cannot be distinguished from that of the customer service they are using.
Azure AD B2C allows you to customize the look-and-feel of user experience on the various pages that can be potentially served and displayed by Azure AD B2C via the defined policies.
For that purpose, Azure AD B2C runs code in your consumer's browser and uses the modern and standard approach Cross-Origin Resource Sharing (CORS)[footnoteRef:37] to load content from a specific URL that you specify in a policy to point to the above HTML5/CSS files: “Cross-origin resource sharing (CORS) is a mechanism that allows restricted resources (e.g. fonts) on a web page to be requested from another domain outside the domain from which the resource originated.”[footnoteRef:38] [37: CROSS-ORIGIN RESOURCE SHARING W3C RECOMMENDATION 16 JANUARY 2014: http://www.w3.org/TR/cors/] [38: CROSS-ORIGIN RESOURCE SHARING: https://en.wikipedia.org/wiki/Cross-origin_resource_sharing]

Compared to the old traditional way, where template pages are owned by the solution where you provided limited text and images, where limited control of layout and feel was offered leading to more than difficulties to achieve a seamless experience, the CORS way supports HTML5 and CSS and allow you to:
· Host the content and the solution injects its controls using client side script.
· Have full control over every pixel of layout and feel.
You can provide as many content pages as you like by crafting HTML5/CSS files (.cshtml files) as appropriate.
Note	For security reasons, the use of JavaScript is currently blocked for customization.
In each of your HTML5 files, you provide an “anchor” element, which corresponds to the required <div id=”api”> element in the HTML or the content page as illustrate hereafter. Azure AD B2C preview indeed requires that all content pages have this specific div.

<!DOCTYPE html>
<html>
 <head>
 <title>Your page content’s tile!</title>
 </head>
 <body>

 <div id="api"></div>

 </body>
</html>

Azure AD B2C preview-related content for the page will be injected into this div, while the rest of the page is yours to control. The Azure AD B2C’s JavaScript code pulls in your content and injects our HTML into this specific div element. Azure AD B2C injects the following controls as appropriate: account chooser control, login controls, multi-factor (currently phone-based) controls, and attribute collection controls. In terms of commitment, we will ensure that i) all our controls are HTML5 compliant and accessible, ii) all our controls can be fully styled, and iii) a control version will not regress.
The merged content is eventually displayed as the dynamic document to your consumer.
To ensure of the above works as expected, you must:
· Ensure your content is HTML5 compliant and accessible
· Ensure your content server is enabled for CORS.
Note 	To verify that the site you are hosting your content on has CORS enabled and test CORS requests, you can use the site http://test-cors.org/. Thanks to this site, you can simply either send the CORS request to a remote server (to test if CORS is supported), or send the CORS request to a test server (to explore certain features of CORS).

Note 	The site http://enable-cors.org/ also constitutes a more than useful resources on CORS.
· Serve content over HTTPS.
· Use absolute URLS such as https://yourdomain/content for all links and CSS content.
Thank to this CORS-based approach, the end users will then have consistent experiences between your application and the pages served by Azure AD B2C.
The aforementioned policies integrate for that purpose the definition of page templates for the user journey to accommodate the various organization’s requirements in this space:
· As per sign-up policy: identity provider selection page, local account sign-up page, social account sign-up page, and error page.
[image:]
· As per sign-in policy: identity provider selection page, and error page.
· As per “unified” sign-up or sign-in policy: unified sign-up or sign-in page, local account sign-up page, social account sign-up page, and multifactor authentication page, and error page.
· As per profile editing policy: identity provider selection page, profile update page, and error page.
· As per reset password policy: forgot password page, and error page.
Note	As of this writing, local account sign-in, verification emails, and self-service password reset pages are only customizable using the company branding feature and not by the above mechanism. For additional information, see the article ADD COMPANY BRANDING TO YOUR SIGN IN AND ACCESS PANEL PAGES[footnoteRef:39]. [39: ADD COMPANY BRANDING TO YOUR SIGN IN AND ACCESS PANEL PAGES: https://azure.microsoft.com/en-us/documentation/articles/active-directory-add-company-branding/]

Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO CUSTOMIZE THE AZURE AD B2C USER INTERFACE (UI)[footnoteRef:40]. [40: AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO CUSTOMIZE THE AZURE AD B2C USER INTERFACE (UI): https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-ui-customization/]

[bookmark: _Ref430615927][bookmark: _Toc454545275]Seamlessly integrating your consumer facing applications
In today’s world, consumer facing modern applications live in an environment that includes a broad spectrum of mobile and native clients, server to server communication, and web APIs, in addition to traditional browser-and-website interactions. Let’s consider how Azure AD B2C allow to embrace the diversity of the situations in a standard fashion.
Embracing industry standard modern protocols and tokens for your applications
Interoperability with your consumer-facing applications is maintained with support for industry standard modern protocols, and notably the OpenID Connect 1.0[footnoteRef:41] protocol and the OAuth 2.0[footnoteRef:42] [footnoteRef:43] protocol. [41: OPEN ID CONNECT CORE 1.0 INCORPORATING ERRATA SET 1: http://openid.net/specs/openid-connect-core-1_0.html] [42: RFC 6749 THE OAUTH 2.0 AUTHORIZATION FRAMEWORK: http://tools.ietf.org/html/rfc6749] [43: RFC 6750 THE OAUTH 2.0 AUTHORIZATION FRAMEWORK: BEARER TOKEN USAGE: http://tools.ietf.org/html/rfc6750]

Through such standards, Azure AD (B2C (Basic preview)), as a next generation authentication platform, is designed to address new requirements that accompany the requirements of the above modern applications.
Note	For additional information, see the article AZURE AD B2C PREVIEW: AUTHENTICATION PROTOCOLS[footnoteRef:44]. [44: AZURE AD B2C PREVIEW: AUTHENTICATION PROTOCOLS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-protocols/]

OAuth 2.0 is more than gaining popularity in the Internet as an authorization protocol for accessing information. This is the primarily protocol for authorization and delegated authentication. Generally speaking, using OAuth 2.0, an application can gain access (with consent from the resource owner – which could be the end user or the administrator user) to impersonate the user, or users in his organization to access the resource.
Note	For more information, see the Microsoft MSDN article OAUTH 2.0 IN AZURE AD[footnoteRef:45]. [45: OAUTH 2.0 IN AZURE AD: http://msdn.microsoft.com/en-us/library/azure/dn645545.aspx]

OpenID Connect 1.0 defines an identity layer on top of OAuth 2.0 and represents the state of the art in modern authentication protocols. It’s a suite of lightweight specifications that provide a framework for identity interactions via REST like APIs. It is based on OAuth 2.0.
Note	For more information, see the Microsoft MSDN article OPENID CONNECT 1.0[footnoteRef:46]. [46: OPENID CONNECT 1.0: https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx]

Note	The OpenID Foundation has recently launched a certification program for OpenID Connect 1.0 implementations. For more information, see the article THE OPENID FOUNDATION LAUNCHES OPENID CONNECT CERTIFICATION PROGRAM[footnoteRef:47]. Azure AD has successfully passed the certification and is certified[footnoteRef:48] as an OpenID Connect 1.0 identity provider. [47: THE OPENID FOUNDATION LAUNCHES OPENID CONNECT CERTIFICATION PROGRAM: http://openid.net/2015/04/17/openid-connect-certification-program/] [48: OPENID CERTIFICATION: http://openid.net/certification/]

Having an OpenID Connect certification program provides confidence that certified implementations will "just work" together. This represents another important step on the road to widely-available secure interoperable digital identity for all the devices and applications that people use. Microsoft is proud to be a key contributor to the development of OpenID Connect 1.0 and now of its certification program.

Note 	Many of you might not realize it, but every time you log into the Azure management portal you are using OpenID Connect 1.0 and OAuth 2.0 and to do so. OpenID Connect 1.0 is used to authenticate you and the management portal uses OAuth 2.0 to acquire an access token and a refresh token which it then uses to communicate with the Azure service management REST API (RDFE) on your behalf. For more information, see the Microsoft MSDN article SERVICE MANAGEMENT REST API REFERENCE[footnoteRef:49]. [49: SERVICE MANAGEMENT REST API REFERENCE: http://msdn.microsoft.com/library/azure/ee460799.aspx]

Many of the tokens issued by Azure AD B2C via the OpenID Connect 1.0 and OAuth 2.0 protocols are implemented with the JSON Web Token (JWT) format. JWT is a compact token format[footnoteRef:50] that is especially apt for REST-based development. JWT use is growing, and products supporting the format are increasingly common in the industry. [50: JSON WEB TOKEN (JWT): http://tools.ietf.org/html/rfc7519]

Note	For more information, see the article AZURE AD B2C PREVIEW: TOKEN REFERENCE[footnoteRef:51]. [51: OPENID CONNECT 1.0: https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx]

[bookmark: _Ref343789338]Exposing directory-specific endpoints for your policies
Azure AD B2C supports the above standard protocols via a STS: the login.microsoftonline.com sign in service that serves all authentication requests from the consumer-facing applications.
For that purposes, login.microsoftonline.com publishes OpenID Connect 1.0 and OAuth 2.0 directory-specific endpoints for the consumer-facing applications. Once registered, these applications (can) communicate with Azure AD B2C by sending requests to theses endpoints.
As depicted hereafter, the above enterprise-level policies are simply specified as an additional p policy parameter at the end of the query string of the request. Such an extension to the aforementioned protocols allows to perform much more than simple authentication and authorization with a full description of the identity experiences such as sign-up, sign-in, and profile editing as you can expect with these policies.
Let’s describe what are these endpoints.
First of all, Azure AD B2C publishes an OpenID Connect 1.0 provider configuration information endpoint, which allows an application to fetch information about Azure AD B2C at runtime. This endpoint is as follows;
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/v2.0/.well-known/openid-configuration?p=<YourPolicy>
Where <YourDirectory> is the name of your B2C tenant used to authenticate the user, and <YourPolicy> an enterprise-level sign-up, sign-in, or profile editing policy created in that B2C tenant and used to acquire a security token.
For example, for the B2C tenant contoso369b2c.onmicrosoft.com, and the B2C_1_B2CSignUp policy the that will be both later created in this document as part of the suggested walkthrough, this corresponds to:
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/v2.0/.well-known/openid-configuration?p=b2c_1_b2csignup
This configuration information endpoint provides a JSON configuration document (openid-configuration.json) as per OpenID Connect Discovery[footnoteRef:52] specification. This metadata document in JSON format provides configuration information such as the OpenID Connect 1.0 and OAuth 2.0 endpoint locations for the considered policy, the token contents, the token signing key and issuer values to validate, etc. [52: OPENID CONNECT DISCOVERY 1.0 INCORPORATING ERRATA SET 1: http://openid.net/specs/openid-connect-discovery-1_0.html]

{
 "issuer": "https://login.microsoftonline.com/5de99415-f87f-4d44-b293-cac70508ba24/v2.0/",

 "authorization_endpoint":
 "https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=b2c_1_b2csignup",
 "token_endpoint": "https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/token?p=b2c_1_b2csignup",
 "end_session_endpoint":
 "https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/logout?p=b2c_1_b2csignup",
 "jwks_uri": "https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/discovery/v2.0/keys?p=b2c_1_b2csignup",

{
 "response_modes_supported": [
 "query",
 "fragment",
 "form_post"
],
 "response_types_supported": [
 "code",
 "id_token",
 "code id_token"
],
 "scopes_supported": [
 "openid"
],
 "subject_types_supported": [
 "pairwise"
],
 "id_token_signing_alg_values_supported": [
 "RS256"
],
 "token_endpoint_auth_methods_supported": [
 "client_secret_post"
],
 "claims_supported": [
 "state",
 "oid",
 "postalCode",
 "idp",
 "name",
 "emails",
 "city",
 "extension_LoyaltyNumber",
 "sub"
]
}

As listed in the above JSON file, and to sustain the several flows defined in OAuth 2.0, 2 public endpoints are published:
1. One endpoint at which an application can obtain an id_token (authorization) token, as follows:
https://login.microsoftonline.com/te/<YourDirectory>.onmicrosoft.com/oauth2/v2.0/authorize?p=<YourPolicy>
For the B2C tenant contoso369b2c.onmicrosoft.com and the B2C_1_B2CSignUp policy, this corresponds to:
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=b2c_1_b2csignup
2. And another endpoint at which applications can obtain an “access” token, as follows:
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/oauth2/v2.0/token?p=<YourPolicy>
For the B2C tenant contoso369b2c.onmicrosoft.com and the B2C_1_B2CSignUp policy, this corresponds to:
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/token?p=b2c_1_b2csignup
After an application is authenticated, Azure AD B2C will issue the application an id_token that allows the application to call the requested web API.
In addition, for OpenID Connect 1.0, one sign-out endpoint is also published as follows:
1. One sign-out endpoint for the logout as follows:
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/oauth2/v2.0/logout?p=<YourPolicy>
For the B2C tenant contoso369b2c.onmicrosoft.com and the B2C_1_B2CSignUp policy, this corresponds to:
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/logout?p=b2c_1_b2csignup
Such an endpoint is described in the OpenID Connect session management[footnoteRef:53] specification. [53: OPENID CONNECT SESSION MANAGEMENT 1.0 - DRAFT 22: http://openid.net/specs/openid-connect-session-1_0.html]

2. One additional endpoint to download a JSON Web Key Set (JWK) (keys.json) document.:
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/discovery/v2.0/keys?p=<YourPolicy>
For the B2C tenant contoso369b2c.onmicrosoft.com and the B2C_1_B2CSignUp policy, this corresponds to:
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/discovery/v2.0/keys?p=b2c_1_b2csignup
This JSON document allows the applications to get the signing keys in order to validate signatures from the OpenID Connect provider of Azure AD B2C.

The following diagram synthetizes the above endpoints:
[image:]
From an application perspective, a sign-up, sign-in, or profile editing request simply consists in a redirect to the OAuth 2.0 authorize endpoint to execute a policy, i.e. a HTTP GET request to the following URL:
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/oauth2/v2.0/authorize?p=<YourPolicy>&<ProtocolStandardQueryParameters>
Where <YourDirectory> is your B2C tenant, <YourPolicy> the name of respectively your sign-up, sign-in, or profile editing request, and <ProtocolStandardQueryParameters> the expected parameters for the protocol along with context and state information.
The user completes the policy in accordance to the policy definition. The application receives from the endpoint a response that contains a JWT security token, for example an ID token (id_token). A ID token represents the user’s identity and provides information about the user in the form of claims. These claims are configured in the policy.
Likewise, a sign-out request for the application is as simply expressed as the following request:
https://login.microsoftonline.com/<YourDirectory>.onmicrosoft.com/oauth2/v2.0/logout?p=<YourPolicy>& ProtocolStandardQueryParameters>
Let’s consider an actual example of a real query with all the parameters in lieu of p=<YourPolicy>& ProtocolStandardQueryParameters>. As illustrated later in this document with a sample web app, when an end user clicks on the sign-in button in the app, the OpenID Connect 1.0 sign-in request will look like (line split for readability):
GET https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/authorize
?p=b2c_1_b2csignin
&client_id=2a2681b1-ac24-4cb3-9829-ce2315500117
&redirect_uri=https%3a%2f%2flocalhost%3a44316%2f
&response_mode=form_post
&response_type=id_token
&scope=openid
&state=OpenIdConnect.AuthenticationProperties%3dhG6CwJrhmPWMS5n1kIGr6QwI3QwqdpGZ4Q8kcWE_ZX6cdtQgvMDXiXEOuPr9o4D6T2h0R2JuETB2NoMhmx327EiNVSI1abOUMNkjG87_WFOGuTOhqMkK2tQpTvmKhEWqcXbjUO73bN-wlLkSvBrLDFZHmCnbrEuIM-1rMjyqVluXW63BxUQACg8Z1xdbmR2KLgp_Rc79WIAzbSVNVEd7lQ
&nonce=635788649787252713.YjlmZjZmMzYtNzdmMi00N2FjLWEzOTEtY2VlNjgyZWJiMzIxMjY2M2JlOTctNjhlOS00Y2MzLTkxNTAtNGI1YWRiMjQxNjdj
HTTP/1.1
Note	The values of state and nonce are opaque to Azure AD B2C. These values are inserted and interpreted by your web application, and more specifically by the code that generated the request, here the OWIN middleware (see below).
As you now understand, the p policy parameter in this illustration invokes a sign-in policy called b2c_1_b2csignin. The OpenID Connect 1.0 response from Azure AD B2C contains an id_token as usual and as expected, carrying the claims you’ll configured later in the policy as part of the suggested walkthrough:
POST https://localhost:44316/
id_token= eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IklkVG9rZW5TaWduaW5nS2V5Q29udGFpbmVyIn0.eyJleHAiOjE0NDMyNzE3ODUsIm5iZiI6MTQ0MzI2ODE4NSwidmVyIjoiMS4wIiwiaXNzIjoiaHR0cHM6Ly9sb2dpbi5taWNyb3NvZnRvbmxpbmUuY29tLzVkZTk5NDE1LWY4N2YtNGQ0NC1iMjkzLWNhYzcwNTA4YmEyNC92Mi4wLyIsImFjciI6ImIyY18xX2IyY3NpZ25pbiIsInN1YiI6Ik5vdCBzdXBwb3J0ZWQgY3VycmVudGx5LiBVc2Ugb2lkIGNsYWltLiIsImF1ZCI6IjJhMjY4MWIxLWFjMjQtNGNiMy05ODI5LWNlMjMxNTUwMDExNyIsIm5vbmNlIjoiNjM1Nzg4NjQ5Nzg3MjUyNzEzLllqbG1aalptTXpZdE56ZG1NaTAwTjJGakxXRXpPVEV0WTJWbE5qZ3laV0ppTXpJeE1qWTJNMkpsT1RjdE5qaGxPUzAwWTJNekxUa3hOVEF0TkdJMVlXUmlNalF4TmpkaiIsImlhdCI6MTQ0MzI2ODE4NSwiYXV0aF90aW1lIjoxNDQzMjY4MTg1LCJuYW1lIjoiUGhpbGlwcGUgQmVyYXVkIChGYWNlYm9vaykiLCJpZHAiOiJmYWNlYm9vay5jb20iLCJvaWQiOiI5ZmE1OWZlYy04ZTMxLTRhMjYtOWIwOC0yY2NhMDUwNmMyZTciLCJzdGF0ZSI6IldBIiwicG9zdGFsQ29kZSI6Ijk4MDUyIn0.ACbKkxaXSm4ZqbjPqU74LTatTBENxV_9NysB88b0PAg0VNg3F2mTWEvynVGECpwi83K3AHoSSFEL2zrimPvwR5SbtQ-HmoASydyti12yzYM1Fso95uEvDK-GF0G56_HbqOizu2j7h_xQGl55aYrk5urCURFxIYZmLxEmIFsVr0z9kS8WiluOABxv6ItTgcc__2sCqaOimulABCVFPtOPkO1CePfnio34WUqMxkxVOeAvMXvR8VbvFUaiiGVOIAAcCnd7HBKRrnRpJSfyr4s4P6_vOhmgDQdsKnmPX4DBU747cYKxvLNn996CcdWJ4WI9M_dsG1MCJG8msvQvLLPXyg
Decoding the URLBase64 id_token from the response yields the following claims decoded in JSON:
Note 	Since the JWT tokens issued by Azure AD B2C are signed but not encrypted, you can easily inspect the content of such a token for debugging purposes. There are several tools available to do so sur as the JWT Decoder[footnoteRef:54]. [54: JWT Decoder: http://calebb.net/]

[image:]

{
 typ: "JWT",
 alg: "RS256",
 kid: "IdTokenSigningKeyContainer"
}.
{
 exp: 1443271785,
 nbf: 1443268185,
 ver: "1.0",
 iss: "https://login.microsoftonline.com/5de99415-f87f-4d44-b293-cac70508ba24/v2.0/",
 acr: "b2c_1_b2csignin",
 sub: "Not supported currently. Use oid claim.",
 aud: "2a2681b1-ac24-4cb3-9829-ce2315500117",
 nonce: "635788649787252713.YjlmZjZmMzYtNzdmMi00N2FjLWEzOTEtY2VlNjgyZWJiMzIxMjY2M2JlOTctNjhlOS00Y2MzLTkxNTAtNGI1YWRiMjQxNjdj",
 iat: 1443268185,
 auth_time: 1443268185,

 name: "Philippe Beraud (Facebook)",
 idp: "facebook.com",
 oid: "9fa59fec-8e31-4a26-9b08-2cca0506c2e7",
 state: "WA",
 postalCode: "98052"

}

Supporting the most common primary scenarios
Since Azure AD B2C is in fact at the core Azure AD, it unsurprisingly has the programming model.
Azure AD B2C provides or will soon provide a support for the following primary scenarios:
[image:]
Note	For additional information, see the article AZURE AD B2C PREVIEW: TYPES OF APPLICATIONS[footnoteRef:55]. [55: AZURE AD B2C PREVIEW: TYPES OF APPLICATIONS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-apps/]

1. Web browser to web application with OpenID Connect 1.0. A user needs to sign in to a web application (written in .NET, PHP, Java, Ruby, Node.js, etc.) that is secured by Azure AD B2C. For that purpose, the application issues an OpenID Connect 1.0 authentication request to Azure AD B2C as previously described, and obtain in return an ID token.
Note	For additional information, see the article AZURE AD B2C PREVIEW: WEB SIGN-IN WITH OPENID CONNECT[footnoteRef:56]. [56: AZURE AD B2C PREVIEW: WEB SIGN-IN WITH OPENID CONNECT: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-oidc/]

2. [bookmark: single-page-application-spa]Web application to web API with OAuth 2.0 authorization code flow. A web application needs to get resources from a web API secured by Azure AD B2C. The application performs in this case a combined OpenID Connect 1.0 and OAuth 2.0 flow, and acquires tokens using authorization codes and refresh tokens.
Note	For additional information, see the article AZURE AD B2C PREVIEW: OAUTH 2.0 AUTHORIZATION CODE FLOW[footnoteRef:57]. [57: AZURE AD B2C PREVIEW: OAUTH 2.0 AUTHORIZATION CODE FLOW: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-oauth-code/]

As of this writing, Azure AD B2C only supports web APIs that are accessed by their own well-known clients. So, in other words, all components MUST share a single Client ID/Application ID.
Note	Azure AD B2C indeed issues an ID token in lieu of an access token represented by the same Client ID/Application ID as the client. Whilst the ID token isn’t technically an access token, it is used as such here. The difference is that an ID token doesn’t have a mechanism to scope down the access to a particular client application. This said, when the web application is the only client that is able to communicate with the considered web API, there is no need for such a scoping mechanism.
3. Single Page Application (SPA) with the OAuth 2.0 implicit flow (coming soon). A single page application (primarily written in JavaScript, and often using dedicated frameworks like AngularJS, Durandal, Ember.js, etc.) that uses Azure AD B2C to secure its web APIs back end.
This scenario isn’t yet available in Azure AD B2C but will be in a short order.
4. Mobile and native application to web API with OAuth 2.0 authorization code flow. A mobile or native application that runs on a phone, tablet, or PC needs to authenticate a user to get resources from a web API that is secured by Azure AD B2C.
As of this writing, Azure AD B2C only supports getting ID tokens that are used to access an application’s backend web API as outlined above. All components MUST share a single Client ID/Application ID. In other words, for the moment, such an application cannot call a third party web API using access token. As stated above, Azure AD B2C only issues ID token as of this writing.
5. Daemon or server side processes to web API with the OAuth 2.0 client credentials flow (coming soon). A daemon application or a server side process with no web user interface needs to get resources from a web API secured by Azure AD B2C.
Such applications can authenticate and get tokens using an application’s identity (rather than using a user’s delegated identity) with the OAuth 2.0 client credentials flow. This scenario isn’t yet available in Azure AD B2C since applications can only get tokens after an interactive user flow has occurred.
Support for the client credentials flow will be added in the near future.
6. Standalone web APIs. As stated above, a web API is only able to receive ID tokens from a client that shares the same Client ID/Application ID.
Leveraging the Azure AD’s next generation app model
From a programming standpoint, Azure AD B2C conforms to Azure AD’s next generation app model currently in public preview, i.e. the app model v2.0 preview.
Note	For additional information, see the articles APP MODEL V2.0 PREVIEW: WHAT'S DIFFERENT?[footnoteRef:58], APP MODEL V2.0 PREVIEW: TYPES OF APPS[footnoteRef:59], APP MODEL V2.0 PREVIEW: PROTOCOLS - OAUTH 2.0 & OPENID CONNECT[footnoteRef:60], and App model v2.0 preview: Token reference[footnoteRef:61]. [58: APP MODEL V2.0 PREVIEW: WHAT’S DIFFERENT?: https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-compare/] [59: APP MODEL V2.0 PREVIEW: TYPES OF APPS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-flows/] [60: APP MODEL V2.0 PREVIEW: PROTOCOLS - OAUTH 2.0 & OPENID CONNECT: https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-protocols/] [61: APP MODEL V2.0 PREVIEW: TOKEN REFERENCE: https://azure.microsoft.com/en-us/documentation/articles/active-directory-v2-tokens/]

The app model v2.0 preview allow you to make protocol calls directly by constructing the HTTP messages necessary to communicate with the Azure AD B2C endpoints. This makes identity management possible on virtually almost every platform and device.
Moreover, there are many open sources libraries available for validating JWT tokens depending on the language of your choice.
Leveraging standard–based development platform and developer libraries
Many developers would rather use language-specific APIs rather than looking at the HTTP payload. Others work in organizations where use of APIs has been mandated,
For them, Azure AD B2C allows leveraging standard–based development platform and developer libraries that already support the app model v2.0 and that take care in this context of the “ugly” protocol details for you. The following table gives you some examples of such client libraries of server-side SDKs.
	Library
	Description

	Active Directory Authentication Library (ADAL)
	The open-source Active Directory Authentication Library (ADAL) identity libraries that enable clients to acquire security tokens from any Azure AD endpoint including B2C, so that they can be used for accessing remote protected resources. These ADAL libraries available on GitHub at https://github.com/AzureAD/ for a variety of platforms: OSes or development stacks. A support for .NET, iOS, and Android is currently available for the app model v2.0.

	Open Web Interface (OWIN)
	The Open Web Interface (OWIN) specification[footnoteRef:62] that describes a standard interface between .NET web servers and .NET applications: by decoupling the two, OWIN makes it possible to write very portable code which is independent from the host it is going to be run on. [62: OWIN — OPEN WEB SERVER INTERFACE FOR .NET, V1.0.0: http://owin.org/spec/spec/owin-1.0.0.html]

Katana project[footnoteRef:63] is a collection of open-source NuGet packages, which i) makes it possible to run the OWIN middleware on classic ASP.NET/IIS and ii) provides various useful features in form of OWIN components. It adds the necessary security middleware from the Microsoft OWIN OpenID Connect 1.0 and OAuth 2.0 components to handle Azure AD (B2C Basic preview) authentication and authorization, and generate the necessary initialization code to validate incoming security tokens according to the Azure AD (B2C Basic preview) directory of choice. [63: Katana Project: http://katanaproject.codeplex.com]

	Restify-OAuth2
	The open-source Restify-OAuth2[footnoteRef:64] package available on GitHub provides a very simple OAuth 2.0 endpoint for the aforementioned Restify framework. (In particular, it implements the OAuth 2.0 client credentials and resource owner password credentials flows only.) [64: OAuth 2 Endpoints for Restify: https://github.com/domenic/restify-oauth2]

	Passport
	The extremely flexible and modular Passport[footnoteRef:65] authentication middleware for Node.js. can be unobtrusively dropped in to any Express-based or Restify web application. [65: Passport: http://passportjs.org/]

Note	Express[footnoteRef:66] is a minimal and flexible Node.js web application framework that provides a robust set of features for web and mobile applications. Restify[footnoteRef:67] is a REST framework specifically meant for RESTful web service intentionally borrows heavily from Express as that is more or less the de facto API for writing web applications on top of node.js. [66: Express: http://expressjs.com/] [67: Restify: http://mcavage.me/node-restify/]

A comprehensive set of strategies support authentication using a username and password, Facebook, Twitter, and more. The passport-azure-ad[footnoteRef:68] plug-in available on GitHub provides a collection of strategies for Azure AD (B2C Basic preview). This plug-in takes care of all of the ugly details of crafting authentication messages, validating tokens from Azure AD (B2C Basic preview), and maintaining user session. All that remains is to give your users a way to sign in, sign out, and gather additional info on the logged in user. [68: Microsoft Azure Active Directory Passport.js Plug-In: https://github.com/AzureAD/passport-azure-ad]

In addition, the same REST-based Azure AD Graph API based management capabilities as Azure AD - including users and groups - can be used in this context from any platform so that your application can make an informed access control decision about a transaction requested by the signed end user.
Note 	Azure AD Graph API is a RESTful API that provides a directory programming surface for querying and updating the directory, and thus to sustain the identities lifecycle management as whole. For additional information, see the article AZURE AD B2C PREVIEW: USING THE GRAPH API[footnoteRef:69] as well as the Microsoft MSDN article AZURE AD GRAPH API[footnoteRef:70]. [69: Azure AD B2C Preview: Using the Graph API: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-devquickstarts-graph-dotnet/] [70: Azure AD GRAPH API: http://msdn.microsoft.com/library/azure/hh974476.aspx]

You can complete one of the quick start tutorials provided by the Azure AD B2C documentation to get up and running with the above developer libraries.
[image:]
Note	For additional information, see section BUILD A QUICK START APPLICATION[footnoteRef:71] of the article AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION. [71: AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-app-registration/#build-a-quick-start-application]

All the quick start applications are available on GitHub on at https://github.com/AzureADQuickStarts/.
To easily identify the code samples in the repo, their name starts with the B2C- prefix such as the B2C-WebApp-WebAPI-OpenIDConnect-DotNet[footnoteRef:72] project, a.NET MVC web application code sample, secured by Azure AD B2C, that calls a web API. [72: B2C-WEBAPP-WEBAPI-OPENIDCONNECT-DOTNET: https://github.com/AzureADQuickStarts/B2C-WebApp-WebAPI-OpenIDConnect-DotNet]

Now that you’re equipped with some understanding on how to integrate your consumer facing applications, let’s continue by an exploration of the service.
Note	For the latest information that pertains to how to integrate applications and APIs in Azure AD B2C as covered in this document, please refer to the related section of the Azure AD B2C section of the AZURE ACTIVE DIRECTORY DEVELOPER'S GUIDE[footnoteRef:73]. This online developer’s guide indeed constitutes the de-facto reference content on this subject by providing overviews on implementation, key features, and protocols of Azure AD (B2C). [73: AZURE ACTIVE DIRECTORY DEVELOPER'S GUIDE: http://aka.ms/aaddev]

Interestingly enough, it also provides a collection of quick start guides with complete instructions to perform fundamental development tasks with Azure AD (B2C), designed to help you getting up and running as efficiently as possible.
You can also see the whitepaper LEVERAGING AZURE AD FOR MODERN BUSINESS APPLICATIONS[footnoteRef:74] in the same series of document. [74: LEVERAGING AZURE AD FOR MODERN BUSINESS APPLICATIONS: http://aka.ms/aadpapers]

Important note	if needed, and beyond and above information, you can get help on Stack Overflow using the azure-active-directory or adal tags.

Controlling the token lifetime
The ability to control the lifetimes of ID tokens, and refresh tokens (as well as access tokens) issued by Azure AD B2C is important both for user experience and for organizations to tune the consumption rate.
The same kind of considerations also applies on how sessions are handled across applications and policies. Azure AD B2C allows you to configure these knobs by editing your existing enterprise-level policies. A few use cases this feature enables are as follows:
· Allow an end-user to stay signed into a mobile application indefinitely, as long as they are continually active on it.
· Meet your security and compliance requirements by setting the right token lifetimes.
· Disable SSO between two applications using the same sign in policy.
· Force re-authentication when a user accesses a high-security part of your application.
[image:]
[bookmark: _Toc454545276]Programmatically managing your users
Finally, for this introduction of Azure AD B2C, you can use the Azure AD Graph API for programmatic user management, i.e., to create, read, update and delete (CRUD) local accounts in your B2C tenant.
The Azure AD Graph API provides REST interfaces for that purpose. This feature is available on a major version, e.g. 1.6 of the API.
Note 	For more information, see the Microsoft MSDN article Azure AD Graph API[footnoteRef:75]. [75: Azure AD GRAPH API: http://msdn.microsoft.com/en-us/library/windowsazure/hh974476.aspx]

As an illustration, to create a local account in your B2C tenant, you can send a HTTP POST request to the “/users” endpoint on Azure AD Graph API:

POST https://graph.windows.net/contoso369b2c.onmicrosoft.com/users?api-version=1.6
{
 "accountEnabled": true,
 "SignInNames": [// Controls what identifier the user uses to sign into their account
 {
 "type": "emailAddress", // Can be 'emailAddress' or 'userName'
 "value": "joedoe@gmail.com"
 }
],
 "creationType": "LocalAccount", // Always set to 'LocalAccount'
 "displayName": "Joe Doe",
 "mailNickname": "joe",
 "passwordProfile": {
 	 "password": "Pass@word1",
 	 "forceChangePasswordNextLogin": false
 },
 "passwordPolicies": "DisablePasswordExpiration"
}

Note	A switch allows to disable password complexity checks during local account creation. This allows you to migrate local accounts from an on-premises database (with password complexity rules different from that of Azure AD B2C’s) into your B2C tenant.

Note	For additional information, see the article AZURE AD B2C PREVIEW: USE THE GRAPH API[footnoteRef:76]. [76: AZURE AD B2C PREVIEW: USE THE GRAPH API: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-devquickstarts-graph-dotnet/]

[bookmark: _Ref429061166][bookmark: _Ref430262232][bookmark: _Toc454545277]Getting started with Azure AD B2C
The following end-to-end walkthrough from creating a new B2C tenant to successfully running a B2C web application registered on that B2C tenant illustrates the various features of Azure AD B2C.
[image:]
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: SIGN UP & SIGN IN CONSUMERS IN YOUR APPLICATIONS[footnoteRef:77], and the link http://azure.microsoft.com/en-us/trial/get-started-active-directory-b2c/. [77: AZURE ACTIVE DIRECTORY B2C PREVIEW: SIGN UP & SIGN IN CONSUMERS IN YOUR APPLICATIONS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-overview/]

Important note	The end-to-end experience may evolve as additional features and other enhancements can be introduced to the service over the time to the service, and more particularly at GA. All screenshots and steps are thus subject to change as Azure AD B2C may evolve until GA. The same considerations apply to the outlined social identity providers that may also update their portal and steps over the time.
[bookmark: _Toc454545278][bookmark: _GoBack]Getting an Azure subscription
An Azure AD B2C test directory can be created through an Azure Subscription. This subscription is only needed to access the Azure Management Portal.
Note	If you don't already have an Azure subscription, you can sign-up for a free one-month trial Azure account by following the link https://azure.microsoft.com/en-us/pricing/free-trial/.

[bookmark: _Toc454545279]Creating an Azure AD B2C directory
Note	For additional information, see the article HOW TO CREATE AN AZURE AD B2C DIRECTORY[footnoteRef:78]. [78: HOW TO CREATE AN AZURE AD B2C DIRECTORY: https://azure.microsoft.com/en-us/documentation/articles/active-directory-get-started-b2c/?rnd=1?]

Creating a new Azure AD B2C directory
Important note	As of this writing, B2C features can't be turned on in your existing directories, if you have any. It is thus required that you create a new directory to try out the Azure AD B2C service, rather than re-using one of your existing organizational tenants.
To create a new Azure AD B2C directory, proceed with the following steps:
1. Open a browsing session and navigate to the classic Azure management portal at https://manage.windowsazure.com/.
2. Sign in to the Azure management portal as the Subscription admin user. This is for instance the same Microsoft Account that you used to sign up for Azure as per previous section.
3. Click NEW in the tray of the bottom, and then select APP SERVICES, ACTIVE DIRECTORY, DIRECTORY.
[image:]
4. Click CUSTOM CREATE. An Add Directory dialog pops up.
[image:]
5. Configure the basic properties for your new B2C directory, i.e. its name, default domain name, and the country or region as follows:
a. In NAME, choose a name for the B2C directory (that will help distinguish it from your other directories in your Azure subscription), for example in our illustration “Contoso 369 Corporation”.
b. In DOMAIN NAME, choose a default domain name which you can use to bootstrap usage of this B2C directory, for example “contoso369b2c.onmicrosoft.com”.
c. In COUNTRY OR REGION, choose a country or region for your B2C directory. This setting is used by Azure AD to determine the datacenter region(s) for your B2C directory. It cannot be changed later.
6. Check This is a B2C directory.
[image:]
7. Click the check mark icon in the lower right of the dialog, and in a few seconds you'll see that your new B2C directory has been created and is available for use in the Azure management portal in the ACTIVE DIRECTORY extension.
[image:]
Your user account is included in that new B2C directory, and you're assigned to the global administrator role. (Other administrator can be added later as required.)
This enables you to manage the B2C directory you created without signing in as a different user of that directory. The Azure AD basic B2C features covered in the previous section can be managed on the (new) Azure Portal at https://azure.portal.com.
For the course of this walkthrough, we’ve created the contoso369b2c.onmicrosoft.com B2C directory/tenant. You will have to choose in lieu of a B2C directory name of your choice whose name is currently not in used.
Whenever a reference to contoso369b2c.onmicrosoft.com is made in a procedure, it has to be replaced by the B2C directory name of your choice to reflect accordingly the change in naming.
Navigating to the B2C features blade
To navigate to the B2C features blade, proceed with the following steps:
1. Still from the classic Azure Management Portal, navigate to the newly created B2C tenant on the ACTIVE DIRECTORY extension by clicking in our configuration Contoso 369 Corporation.
[image:]
You can manage users and groups, and configure the B2C tenant respectively under the USERS, GROUPS, and CONFIGURE.
2. Click CONFIGURE.
[image:]
3. Click Manage B2C settings in b2C administration. The new Azure portal with the B2C features blade shows up in a new browser tab (or window).
Note	A blade is one piece of the overall view. You can think of a blade as a window.
[image:]
4. Pin this blade to your Startboard for easy access by clicking the drawing pin at the top of the blade.
[image:]
You can directly navigate to this blade using the following URL:
https://portal.azure.com/<NewlyCreatedDomain>.onmicrosoft.com/?Microsoft_AAD_B2CAdmin=true#blade/Microsoft_AAD_B2CAdmin/TenantManagementBlade/id/<NewlyCreatedDirectory>.onmicrosoft.com
And sign in with the Admin credentials, where <NewlyCreatedDirectory> is the B2C tenant you’ve created, for example in our illustration:
https://portal.azure.com/contoso369b2c.onmicrosoft.com/?Microsoft_AAD_B2CAdmin=true#blade/Microsoft_AAD_B2CAdmin/TenantManagementBlade/id/contoso369b2c.onmicrosoft.com
An enabled Browse entry point on the Azure Admin portal is also available to improve discoverability of B2C Admin features.
When signed in with the Admin credentials of your B2C tenant, click Browse on the left hand navigation, and then Azure AD B2C to access the B2C settings blade. If you are already signed in to a different tenant, switch tenants (on the top-right corner).
[image:]
[bookmark: _Toc454545280]Configuring the local account provider
A local account provider is created by default on your newly created B2C tenant.
To select how to create local accounts, proceed with the following steps:
1. Switch back to the B2C features blade or navigate to the related URL (see above).
2. On the B2C features blade, click Identity providers. An Identity providers blade opens up.
[image:]
3. In Local accounts, choose how users will create their accounts local to this B2C tenant:
a. Email (default). Users will be prompted for an email address which will be verified at sign-up and become their user identifier.
b. Username. Users may create their own unique user identifier. An email address will be collected from the user and verified at sign-up.
[bookmark: _Toc454545281]Configuring social identity providers
You now have to proceed with the configuration of the social identity providers you want to use on your B2C tenant. Before you complete the configuration, you need to create first application registrations on the related social identity provider developer portals and supply them with the right parameters to work properly with the Azure AD B2C service.
This section shows you how to configure Facebook and Google+ as social identity providers on your B2C tenant.
Note	For additional information, see the articles AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH FACEBOOK ACCOUNTS[footnoteRef:79], and AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH GOOGLE+ ACCOUNTS[footnoteRef:80]. [79: AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH FACEBOOK ACCOUNTS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-setup-fb-app/] [80: AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH GOOGLE+ ACCOUNTS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-setup-goog-app/]

Note	For instructions on configuring Amazon, LinkedIn an Microsoft Accounts, see the articles AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH AMAZON ACCOUNTS[footnoteRef:81], AZURE ACTIVE DIRECTORY (AD) B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH LINKEDIN ACCOUNTS[footnoteRef:82], AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH MICROSOFT ACCOUNTS[footnoteRef:83]. [81: AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH AMAZON ACCOUNTS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-setup-amzn-app/] [82: AZURE ACTIVE DIRECTORY (AD) B2C PREVIEW: PROVIDE SIGN UP AND SIGN IN TO CONSUMERS WITH LINKEDIN ACCOUNTS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-setup-li-app/] [83: AZURE ACTIVE DIRECTORY B2C PREVIEW: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH MICROSOFT ACCOUNTS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-setup-msa-app/]

Creating a Facebook application
To use Facebook as a social identity provider in Azure AD B2C, you will first need to create a Facebook application and supply it with the right parameters.
You need a Facebook account to perform the following steps. If you don’t have one, create one at https://www.facebook.com/.
To create a Facebook application, proceed with the following steps:
1. Open a separate browser window / tab and navigate to the Facebook Developers website at https://developers.facebook.com/. Click Log In in the toolbar.
[image:]
2. Sign-in with your Facebook account credentials.
3. If you have not already registered, click My Apps.
4. Click Register as a Developer.
5. Accept the policy and follow the registration steps.
6. Click My Apps, and then Add a New App. An eponym dialog shows up.
[image:]
7. Choose Website as the platform, and then click Skip and Create App ID in the upper right corner. A Create a New App ID dialog shows up to register the “app” with Facebook.
[image:]
8. Fill out the relevant details in the dialog.
a. In Display Name, type a name for your B2C tenant, for example in our configuration “Contoso369 B2C directory”.
b. In Category, select Business.
c. Click Create App ID.
d. In the Security Check dialog, select all the appropriate photos, and then select Submit.
9. Once the application is created, a dashboard is displayed.
[image:]
10. Click Settings on the left hand navigation.
[image:]
11. In Contact Email, specify a valid email.
12. Click Add Platform. A Select Platform dialog shows up.
[image:]
13. Select Website. A Website pane is added.
[image:]
14. In Site URL field, type in “https://login.microsoftonline.com/”.
15. Click Save Changes.
16. You will need the value of both App ID and App Secret to configure Facebook as a social identity provider in your B2C tenant. Note down these values that will be later respectively referred as to the “Client ID” and “Client Secret” values.
a. Copy the value of App ID.
[image:]
b. Click Show in App Secret. A Please Re-enter Your Password security dialog shows up.
[image:]
Note 	App Secret is an important security credential.
c. Re-enter your password and click Submit. Copy the value of App Secret.
17. Click Advanced.
[image:]
18. As invited, you should configure a valid OAuth redirect URI. Scroll down to Client OAuth Settings.
[image:]
d. In Valid OAuth redirect URIs, you will need to specify:
https://login.microsoftonline.com/te/<YourDirectory>.onmicrosoft.com/oauth2/authresp
where <YourDirectory> is the B2C tenant you’ve created, for example in our illustration:
https://login.microsoftonline.com/te/contoso369b2c.onmicrosoft.com/oauth2/authresp
19. Click Save Changes at the bottom of page after you are done.
20. Finally, in order to make this Facebook application usable by Azure AD B2C, you need to grant general public access to it:
a. Click Status & Review on the left navigation.
[image:]
b. Select Yes in the access switch. A Make App Public dialog shows up.
[image:]
c. Click Confirm.
[image:]

Creating a Google application
You need a Google account perform the following steps. If you don’t have one, you can get it at https://accounts.google.com/SignUp.
To create a Google application, proceed with the following steps:
1. Navigate to the Google Developers Console at https://console.developers.google.com/ in a separate browser window or tab and sign-in with your Google account credentials.
2. From the Google Developers Console toolbar, click Select a project, and then select Create a project...
[image:]
3. A New Project dialog shows up to registers the application with Google.
[image:]
a. In Project name, type a name for your B2C tenant, for example in our configuration “Contoso369 B2C directory”. The Project ID will then be “contoso369-b2c-directory”.
b. Check I agree that my use of any services and related APIs is subject to my compliance with the applicable Terms of Service.
c. Click Create. An activity is then executed to create the project.
d. Wait until the activity completion.
[image:]
4. Once the application is created, a dashboard is displayed.
[image:]
5. Click APIs & auth on the left hand navigation, and then select Credentials underneath.
6. Click Add credentials.
[image:]
7. Click OAuth 2.0 client ID. A Create Client ID page shows up.
[image:]
8. Click Configure consent screen.
[image:]
9. In Product Name, type a product name, for example in our configuration “Contoso369 B2C directory”.
10. Click Save.
11. Select Web Application.
[image:]
12. In Authorized JavaScript origins, specify the following JavaScript origin: https://login.microsoftonline.com
13. In Authorized Redirects URIS, specify the following Redirect URI:
“https://login.microsoftonline.com/te/<YourDirectory>.onmicrosoft.com/oauth2/authresp”
where <YourDirectory> is the B2C tenant you’ve created, for example in our illustration:
https://login.microsoftonline.com/te/contoso369b2c.onmicrosoft.com/oauth2/authresp
Note	URI must be all lower case. Upper case character cause redirect URI mismatch error.
[image:]
14. Click Create. An OAuth client dialog shows up.
[image:]
15. Note down the values of client ID and client secret. You will need the value of both client ID and client Secret to configure Google as a social identity provider in your B2C tenant. Note down these values that will be later respectively referred as to the “Client ID” and “Client Secret” values.
Note	Client Secret is an important security credential.
16. Click OK.
Configuring Facebook and Google as social identity providers in your B2C tenant
To configure both Facebook and Google on your B2C tenant, proceed with the following steps:
1. Switch back to the B2C features blade or navigate to the related URL, for example in our illustration:
https://portal.azure.com/ contoso369b2c.onmicrosoft.com/?Microsoft_AAD_B2CAdmin=true#blade/Microsoft_AAD_B2CAdmin/TenantManagementBlade/id/contoso369b2c.onmicrosoft.com
2. On the B2C features blade, click Identity providers. An Identity providers blade opens up.
[image:]
3. Click Add at the top of the blade.
[image:]
4. In the Add social identity provider blade, provide a friendly name for the social identity provider configuration, for example "Facebook (Contoso 369)".
5. Click Identity provider type, a Select social identity provider blade opens ups.
[image:]
6. Select Facebook, and then click OK.
7. Click Set up this identity provider. An eponym blade opens up.
[image:]
8. Enter respectively in Client ID and Client secret the “Client ID” and “Client Secret” values you received during the creation of the Facebook application.
9. Click OK, and then click Create to save the configuration.
10. Repeat the same steps for Google and use the “Client ID” and “Client Secret” values noted down during the creation of the Google application.
[image:]
11. Close the Identity providers blade. Leave the B2C features blade open.
[bookmark: _Ref429400032][bookmark: _Toc454545282]Registering an application on your B2C tenant
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION[footnoteRef:84]. [84: AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-app-registration/]

To register an application on your B2C tenant, proceed with the followings steps:
1. On the B2C features blade on the Azure Portal, click Applications.
2. Click Add at the top of the blade. A Relying Party App Information blade shows up.
[image:]
3. In Name, provide an application name that will describe your application to consumers, for example in our configuration “Contoso 369 B2C App”.
4. Since we’re going to configure a web-based application later in this document, toggle the Include web app / web API switch to Yes.
[image:]
Note	If you are rather writing a mobile application, toggle the Include native client switch to Yes. Copy down the default Redirect URI automatically created for you.
5. In Reply URLs, type “https://localhost:44316”, which the default value of the sample web application provided. Reply URLs are endpoints where Azure AD B2C will return any tokens your application requests.
Note	If the application top register also includes a web API that needs to be secured, you'll want to create (and copy) an Application Secret as well by clicking Generate key.
6. Click Create to register your application.
7. Click the application that you just created and Note down the application’s globally unique Application Client ID that you'll use later in the application’s code: 197da538-760c-4868-afca-94bd5e40b0c1.
[image:]
8. This value will be later referred as to the “Application Client ID” value.
[bookmark: _Toc454545283]Creating policies using default user journeys
As covered before, you can create policies for the Sign up, Sign in, and Profile Editing user journeys. Such policies describe the experiences that users will go through during respectively sign up, sign in, and profile editing.
Let’s start with the sign-up policy and the related operations and steps.
Creating and running a sign-up policy
A sign-up policy describes the journeys that users will go through during sign up and the contents of tokens that the application will receive on successful sign ups.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK[footnoteRef:85]. [85: AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-policies/]

To create a sign-up policy, proceed with the following steps:
1. On the B2C features blade, click Sign-up policies,
2. Click Add at the top of the blade. An Add sign-up policy blade opens up.
[image:]
3. In Name, type a name for the policy, for example in our illustration “B2CSignUp”. This name determines the sign-up policy name used by your application.
4. Click Identity providers. A Select identity providers blade opens up.
[image:]
a. Select Google (Contoso 369) to allow users to sign up with their existing Google account.
b. Select Facebook (Contoso 369) to alternatively allow users to sign up with their existing Facebook account.
c. Select Email signup to alternatively allow users to sign up and create a local account with their email address.
d. Click OK.
5. Click Sign-up attributes to choose attributes that you want to collect from the user during sign up. A Select sign-up attributes opens up.
[image:]
a. For the purpose of this walkthrough, select City, Display Name, and Postal Code, and State/Province. This will construct the web form that the end user sees during sign up.
b. Click OK.
6. Click Applications claims. An Application claims opens up.
[image:]
a. Select City, Display Name, Emails, Identity Provider, Postal Code, State/Province, and User’s Object ID. After an end user signs up, these claims are sent back to the app in a token.
b. Click OK.
[image:]
7. Click Create to complete the creation of the sign-up policy.
A B2C_1_ fragment is added to the front of the policy name you’ve specified in the steps above: B2C_1_SignUp.
You can click on the policy that you just created and click Run Now to experience the self-service sign up flow without a single line of code.
To test the policy, proceed with the following steps:
1. Click the B2C_1_B2CSignUp policy. An eponym blade opens up.
[image:]
2. In Select application to run policy, select Contoso 369 B2C App.
3. in Select Redirect URI, select https://localhost:44316.
4. Click Run now. A new browser tab opens up and you can run through the user journey of signing up for your application (line split for readability):
https://login.microsoftonline.com/contoso369b2c.onmicrosoft.com/oauth2/v2.0/authorize
?p=B2C_1_B2CSignUp
&client_Id=2a2681b1-ac24-4cb3-9829-ce2315500117
&nonce=defaultNonce
&redirect_uri=https%3A%2F%2Flocalhost%3A44316
&scope=openid
&response_type=id_token
&prompt=login
5. Go back to the browser tab where the Azure Portal is open. Close the two blades just opened.
6. Leave the B2C features blade open.
Finally, the policy blade enables you to export and download the newly created policy as an XML file as mentioned before.
To download the policy, proceed with the following steps:
1. Click Download at the top of the blade.
You’re the invited to save an <YourDirectory>.onmicrosoft.com-B2C_1_<YourPolicyName>.xml file for the B2C_1_<YourPolicyName> policy in the <YourDirectory>.onmicrosoft.com tenant.
[image:]
2. Click Save.
3. Open the contoso369b2c.onmicrosoft.com-B2C_1_B2CSignUp.xml XML file.
Creating a sign-in policy
A sign-in policy describes the journeys that that users will go through during sign in and the contents of tokens that the application will receive on successful sign ins.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK[footnoteRef:86]. [86: AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-policies/]

To create a sign-in policy, proceed with the following steps:
1. On the B2C features blade, click Sign-in policies. An eponym blade opens up.
2. Click Add at the top of the blade. An Add sign-in policy blade opens up.
[image:]
3. In Name, type a name for the policy, for example in our illustration “B2CSignIn”.
4. Click Identity providers. A Select identity providers blade opens up.
[image:]
a. Select Google (Contoso 369), and Facebook (Contoso 369) to allows users to sign in with their existing Google or Facebook account.
b. Also select Local Account SignIn to alternatively allow users to sign in with their email address.
c. Click OK.
5. Click Application claims to choose the claims that you want returned in the tokens back to your application after a successful sign in journey. A select applications claims blade opens up.
[image:]
a. Select Display Name, Identity Provider, Postal Code, State/Province, and User’s Object ID. After an end user signs in, these claims are sent back to the app in a token.
b. Click OK.
6. Click Create to create the policy.
As previously outlined, the B2C_1_ fragment is automatically added as a prefix to the name of the policy: B2C_1_B2CSignIn. Run now allows you to test the policy you’ve just created and consequently to experience the sign in flow without a single line of code.
7. Close the blade just opened. Leave the B2C features blade open.
Creating a profile editing policy
Creating a profile editing policy is similar to creating a self-service sign up policy.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK[footnoteRef:87]. [87: AZURE ACTIVE DIRECTORY B2C PREVIEW: EXTENSIBLE POLICY FRAMEWORK: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-policies/]

To create a profile editing policy, proceed with the following steps:
1. On the B2C features blade, click Profile editing policies,
2. Click Add at the top of the blade. An Add profile editing policy blade opens up.
[image:]
3. In Name, type a name for the policy, for example in our illustration “B2CUserProfileUpdate”.
4. Click Identity providers. A Select identity providers blade opens up.
[image:]
a. Select Google (Contoso 369), and Facebook (Contoso 369) to allows users to sign in with their existing Google or Facebook account. Also select Local Account SignIn to alternatively allow users to sign in with their email address.
b. Click OK.
5. Click Profile attributes. A Select profiles attributes blade opens up.
[image:]
a. Select City, Display Name, Postal Code, and State/Province.
b. Click OK.
6. Click Application claims. A Select application claims blade opens up.
[image:]
a. Select City, Display Name, Postal Code, State/Province, and User’s Object ID.
b. Click OK.
7. Click Create.
The B2C_1_ fragment is automatically added as a prefix to the name of the policy: B2C_1_B2CUserProfileUpdate. As before, Run now allows you to test the policy you’ve just created Close the blade just opened. Leave the B2C features blade open.
Noting down the policy IDs
Note	All policies have the B2C_1_ fragment added to the front of all the policy names you created in the steps above.
Capture policy names to add to the web sample in the step below, for example in our illustration:
· The “Application Client ID” value, i.e. 2a2681b1-ac24-4cb3-9829-ce2315500117 (See section REGISTER AN APPLICATION ON YOUR B2C TENANT)
· B2C_1_B2CSignUp
· B2C_1_B2CSignIn
· B2C_1_B2CUserProfileUpdate
[bookmark: _Toc454545284]Configuring and running a sample application
Now that you have an application registered with Azure AD B2C, and “suitable” policies defined, you can add, configure, and run a sample application on your favorite platform and IDE.
For that purpose, you can complete one of the quick start tutorials provided by the Azure AD B2C documentation to get up and running.
[image:]
Note	For additional information, see section BUILD A QUICK START APPLICATION[footnoteRef:88] of the article AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION. [88: AZURE ACTIVE DIRECTORY B2C PREVIEW: HOW TO REGISTER YOUR APPLICATION: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-app-registration/#build-a-quick-start-application]

For the purpose of this overview, we will use the .NET MVC sample application.
Note	For additional information, see the article AZURE AD B2C PREVIEW: BUILD A .NET WEB APP[footnoteRef:89]. [89: AZURE AD B2C PREVIEW: BUILD A .NET WEB APP: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-devquickstarts-web-dotnet/]

Installing Visual Studio Community 2015
Visual Studio Community 2015 is a free, fully-featured, and extensible IDE for creating modern applications for Windows, Android, and iOS, as well as web applications and APIs, and cloud services.
To install Visual Studio Community 2015, proceed with the following steps:
1. Open a browsing session and navigate to https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx.
2. Click Download Community 2015.
[image:]
3. Click Save to download the setup file (vs_community.exe file).
4. Click Run, and follow the instructions to setup the environment.
Getting a sample application from the GitHub
For the purpose of this walkthrough, we are going to build and add a sample .NET MVC web application. The code for this sample application is maintained on GitHub: B2C-WebApp-OpenIdConnect-DotNet[footnoteRef:90]. [90: B2C-WebApp-OpenIdConnect-DotNet project: https://github.com/AzureADQuickStarts/B2C-WebApp-OpenIdConnect-DotNet]

However, for the sake of brevity, we will use an almost completed version for this sample application.
Note	To build the sample as you go, you can instead download a skeleton project as a .zip[footnoteRef:91] or clone the skeleton: [91: B2C-WebApp-OpenIdConnect-DotNet-skeleton.zip file: https://github.com/AzureADQuickStarts/B2C-WebApp-OpenIdConnect-DotNet/archive/skeleton.zip]

git clone --branch skeleton https://github.com/AzureADQuickStarts/B2C-WebApp-OpenIdConnect-DotNet.git
Related instructions are provided in the article Azure AD B2C Preview: Build a .NET web app[footnoteRef:92]. [92: AZURE AD B2C PREVIEW: BUILD A .NET WEB APP: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-devquickstarts-web-dotnet/]

To get this almost completed sample application, proceed with the following steps:
1. Download the B2C-WebApp-OpenIdConnect-DotNet-complete.zip[footnoteRef:93] file from GitHub and save it to your computer if you haven’t done so already. [93: B2C-WebApp-OpenIdConnect-DotNet-completed.zip file: https://github.com/AzureADQuickStarts/B2C-WebApp-OpenIdConnect-DotNet/archive/complete.zip]

[image:]
2. Click Save and save it on your computer.
3. Extract the B2C-WebApp-OpenIdConnect-DotNet-complete.zip file.
Configuring the sample application
We will configure the sample to use the sign-up, sign-in, and update profile policies created in the B2C tenant. This will allow the sample B2C-WebApp-OpenIdConnect-DotNet application to issue sign-up and sign-in requests to the Azure AD B2C service.
The OpenID Connect OWIN middleware (Microsoft.Owin.Security.OpenIdConnect) enables the sample application to seamlessly use OpenID Connect for authentication. This middleware is available as NuGet package[footnoteRef:94] for the Visual Studio development environment. [94: Microsoft.Owin.Security.OpenIdConnect 3.0.1 NuGet package: h http://www.nuget.org/packages/Microsoft.Owin.Security.OpenIDConnect/]

To configure the sample application, proceed with the following steps:
1. Open the solution in Visual Studio Community 2015.
a. Click File | Open | Project/Solution
b. Navigate to the extracted complete.zip file
2. Open the WebApp-OpenIDConnect-DotNet-B2C.sln solution file.
3. Open the Solution Explorer if it’s not already the case.
[image:]
4. The References section of the WebApp-OpenIDConnect-DotNet-B2C shows a series of unresolved references with an exclamation mark.
5. Under WebApp-OpenIDConnect-DotNet-B2C, right-click References, and then select Manage NuGet Packages... to (try to) resolve them. A NuGet window opens up and is docked as a tabbed document.
[image:]
6. Click Restore. The missing NuGet packages are then downloaded to resolve the above unresolved references.
[image:]
7. Back to the Solution Explorer window, select WebApp-OpenIDConnect-DotNet-B2C
8. Open the web.config file in the root folder of the project.

<?xml version="1.0" encoding="utf-8"?>
<!--
 For more information on how to configure your ASP.NET application, please visit
 http://go.microsoft.com/fwlink/?LinkId=301880
 -->
<configuration>

 <appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />

 <add key="ida:Tenant" value="[Enter the name of your B2C tenant, e.g. contoso.onmicrosoft.com]" />
 <add key="ida:ClientId" value="[Enter the Application Id assinged to your app by the Azure portal, e.g.580e250c-8f26-
 49d0-bee8-1c078add1609]" />
 <add key="ida:AadInstance" value="https://login.microsoftonline.com/{0}{1}{2}" />
 <add key="ida:RedirectUri" value="https://localhost:44316/" />
 <add key="ida:SignUpPolicyId" value="[Enter your sign up policy name, e.g. b2c_1_sign_up" />
 <add key="ida:SignInPolicyId" value="[Enter your sign in policy name, e.g. b2c_1_sign_in]" />
 <add key="ida:UserProfilePolicyId" value="[Enter your edit profile policy name, e.g. b2c_1_profile_edit" />

 </appSettings>
 …
</configuration>

9. In web.config, find ‘ida:Tenant’ and replace the value with your B2C tenant name, for example in our configuration “contoso369b2c.onmicrosoft.com”.
10. Find the app key ‘ida:ClientId’ and replace the value with the “Application Client ID” value you copied from the B2C features blade “197da538-760c-4868-afca-94bd5e40b0c1”.
11. Leave "ida:RedirectUri" as-it: “https://localhost:44316/”.
12. Replace the value in the ‘ida:SignUpPolicyId’, ‘ida:SignInPolicyId’, and ‘ida:UserProfilePolicyId’ by the name of the corresponding previously created policy, for example in our configuration “B2C_1_B2CSignUp”, “B2C_1_B2CSignIn”, and “B2C_1_B2CUserProfileUpdate”.

<?xml version="1.0" encoding="utf-8"?>
<!--
 For more information on how to configure your ASP.NET application, please visit
 http://go.microsoft.com/fwlink/?LinkId=301880
 -->
<configuration>

 <appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />

 <add key="ida:Tenant" value="contoso369b2c.onmicrosoft.com" />
 <add key="ida:ClientId" value="197da538-760c-4868-afca-94bd5e40b0c1" />
 <add key="ida:AadInstance" value="https://login.microsoftonline.com/{0}{1}{2}" />
 <add key="ida:RedirectUri" value="https://localhost:44316/" />
 <add key="ida:SignUpPolicyId" value="B2C_1_B2CSignUp" />
 <add key="ida:SignInPolicyId" value="B2C_1_B2CSignUp" />
 <add key="ida:UserProfilePolicyId" value="B2C_1_B2CUserProfileUpdate" />

 </appSettings>
 …
</configuration>

13. Save the file. Click File | Save All.
[bookmark: step-5-run-the-application-and-issue-sig]Running the sample application
You are almost done securing the sample application with Azure AD B2C.
To run the sample application, proceed with the following steps:
1. Clean the Visual Studio solution. Click Build | Clean Solution.
2. Rebuild the Visual Studio solution. Click Build | Rebuild Solution.
3. Run the sample application. Press F5 to run the solution.
[image:]
Signing up to sample application
To sign up to sample application, click Sign up. You’re redirected to an identity provider selection page provided by Azure AD B2C as per B2C_1_B2CSignUp policy.
[image:]
Signing up as a Facebook account
To sign up as a Facebook account, proceed with the following step:
1. Click the Facebook icon. You are now redirected to Facebook to log in.
[image:]
2. Enter your Facebook credentials, and then click Log In.
[image:]
3. Click Okay. You’re redirected back to a social account sign-up page provided by Azure AD B2C as per B2C_1_B2CSignUp policy.
[image:]
4. Complete the form and click Create. Whist your account is being created, the following message is displayed: “Hold on while we finish setting up your account and signing you in”. Once completed, you’re now logged in the application.
[image:]
5. Click Claims in the upper left corner after sign-up to see the contents of tokens received.
[image:]
6. Click the display name in the upper right corner, and then select Edit Profile. You’re redirected back to a profile update page provided by Azure AD B2C as per B2C_1_B2CUserProfileUpdate policy.
[image:]
7. Click Cancel, and then click Sign out in the upper right corner. Do not close the running sample application.
Signing up as a Google account
To sign up as a Google account, proceed with the following step:
1. Whilst still in the sample application, click Sign in, and then click this time the Google icon. You are now redirected to Google to sign in.
[image:]
2. Enter your Google email address, and then click Next.
[image:]
3. Enter your Google account credential, and then click Sign in.
[image:]
4. Click Allow. You’re redirected back to a page.
[image:]
8. Complete the form, and then click Create. Once the account has been created in your B2C tenant, you’re now logged in the application.
5. Click Sign out in the upper right corner.
Signing up as a B2C tenant local account
To sign up as a local account, proceed with the following step:
1. Whilst still in the sample application, click Sign in, and then click this time Email signup. You’re redirected back to a local account sign-up page provided by Azure AD B2C as per B2C_1_B2CUserProfileUpdate policy.
[image:]
2. Click Send verification code.
[image:]
3. In Verification code, enter the received code, and then click Verify code.
[image:]
4. Click Create. While your account is being created, the following message is displayed: “Hold on while we finish setting up your account and signing you in”.
5. Click Sign out in the upper right corner.
[bookmark: _Toc454545285]Viewing the users of the B2C tenant
If you’ve followed the instructions provided in the previous section, you should now have some users created in the B2C tenant.
To view the users of the B2C tenant, proceed with the following steps:
1. Switch back to the (classic) Azure Management Portal or navigate to it at https://manage.windowsazure.com. Sign in as the Subscription Administrator if needed. This is the same work or school account or the same Microsoft Account that you used to create your B2C tenant above.
2. Navigate to the B2C tenant on the ACTIVE DIRECTORY extension by clicking in our configuration Contoso 369 Corporation.
3. Click USERS.
[image:]
End users that signed up with a social identity are listed as cpim_<user#>@<YourDirectory>.onmicrosoft.com, where <YourDirectory> is the B2C tenant you created, and <user#> an allocated user number, for example in our configuration: cpim_964916140232284@contoso369b2c.onmicrosoft.com.
Likewise, end users that signed up locally with a verified address mail are listed as <VerifiedEmailAddress>1#EXT#@<YourDirectory>.onmicrosoft.com, <VerifiedEmailAddress> is the verified email address where @ is replaced by an underscore.
[bookmark: _Toc454545286]Adding Multi-Factor Authentication
As previously depicted, Azure AD B2C integrates directly with Azure MFA to allow you to smoothly add an additional factor of authentication to sign-up and sign-in experiences in your consumer-facing applications
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: ENABLE MULTI-FACTOR AUTHENTICATION IN YOUR CONSUMER-FACING APPLICATIONS[footnoteRef:95]. [95: AZURE ACTIVE DIRECTORY B2C PREVIEW: ENABLE MULTI-FACTOR AUTHENTICATION IN YOUR CONSUMER-FACING APPLICATIONS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-mfa/]

Let’s modify both the previously configured sign-up and sign-in policies, and try the reconfigured policies.
[bookmark: modify-your-sign-up-policy-to-enable-mul]Modifying the sign-up policy to enable multi-factor authentication
To enable a multi-factor authentication in the sign-up policy, proceed with the following steps:
1. Switch back to the B2C features blade or navigate to the related URL:
https://portal.azure.com/contoso369b2c.onmicrosoft.com/?Microsoft_AAD_B2CAdmin=true#blade/Microsoft_AAD_B2CAdmin/TenantManagementBlade/id/contoso369b2c.onmicrosoft.com
2. Click Sign-up policies.
3. Click the previously configured B2C_1_B2CSignUp sign-up policy to open it.
[image:]
4. Click Edit at the top of the blade, and then click Multifactor authentication.
[image:]
5. Toggle State to ON.
6. Click OK.
7. Click Save at the top of the blade.
A consumer account gets created in your B2C tenant before the multifactor authentication step occurs. During the step, the consumer is asked to provide their phone number and verify it. If verification is successful, the phone number is attached to the consumer account for later use. Even if the consumer cancels or drops out, the consumer can be asked to verify a phone number again during next sign-in (with multifactor authentication enabled).
[bookmark: modify-your-sign-in-policy-to-enable-mul]Modifying the sign-in policy to enable multi-factor authentication
To enable a multi-factor authentication in the sign-in policy, repeat steps 1 to 6 of the previous section but select this time the previously configured B2C_1_B2CSignIn sign-in policy.
Let’s see the user’s experience since for the moment no phone number has been attached to the already created accounts.:
1. Whilst still in the sample application – or rerun it from Visual Studio if needed -, click Sign in. You’re redirected to an identity provider selection page provided by Azure AD B2C as per B2C_1_B2CSignIn policy.
2. Click for example the Facebook icon. You are now redirected to Facebook to log in.
3. Once logged in, you’re redirected back to a multifactor authentication page as per above policy.
[image:]
Since no phone number is attached to the account, you’re asked to provide one and verify it.
4. Specify your phone number, and then click Send Code. The following message is displayed: “We’re sending you a text message at <ProvidedPhoneNumber>”.
[image:]
5. Once received, enter the verification code, and then click Verify Code. The following message is displayed: “We’re verifying the code sent to <ProvidedPhoneNumber>”.
6. On successful verification, you’re logged in. In the meantime, the verified phone number has been attached for later use to the related account in the B2C tenant.
7. Click Sign out in the upper right corner, and then click Sign in again.
8. Select the Facebook icon again. As the result of the roundtrip, you’re redirected to the multifactor authentication page as per policy.
[image:]
9. Click Send Code again. Enter the new verification code, and then click Verify Code. On successful verification, you’re logged in.
[bookmark: _Toc454545287]Resetting a local account password
Azure AD B2C provides a self-service password reset (SSRP). This feature allows the users who have signed up for local accounts to reset their passwords on their own.
As on can easily imagine, this significantly contributes to reduce the burden on your organization’s support staff, especially if your application has millions of consumers using it on a regular basis. However, your B2C tenant will not have the self-service password reset capability turned on by default.
Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: SETUP SELF-SERVICE PASSWORD RESET FOR YOUR CONSUMERS[footnoteRef:96]. [96: AZURE ACTIVE DIRECTORY B2C PREVIEW: SETUP SELF-SERVICE PASSWORD RESET FOR YOUR CONSUMERS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-sspr/]

Enabling self-service password reset
To turn it on, proceed with the following steps:
1. Switch back to the (classic) Azure Management Portal or navigate to it at https://manage.windowsazure.com.
2. Navigate to the created B2C tenant on the ACTIVE DIRECTORY extension by clicking in our configuration Contoso 369 Corporation.
3. Click CONFIGURE.
4. Scroll down to the user password reset policy section.
[image:]
5. Toggle USERS ENABLED FOR PASSWORD RESET to YES.
[image:]
6. Please note that Alternate Email Address is checked. As of this writing, only using a verified email address as a recovery method is supported. One can expect additional recovery methods (verified phone number, security questions, etc.) in the future.
Leave it as-is.
7. Click SAVE at the bottom of the tray.
Performing a self-service password reset
To perform a self-service password reset, proceed with the following steps:
1. Whilst still in the sample application – or rerun it from Visual Studio if needed -, click Sign in.
2. Select Local Account Signin.
[image:]
3. On the local account sign-in page, click Can’t access your account?. You’re redirected to a Get back into your account page at https://passwordreset.microsoftonline.com.
[image:]
4. Specify your user ID, pass the captcha, and then click Next.
[image:]
5. Click Email. An account email verification code email is then sent to the verified email address of your local account.
6. Enter the received verification code, and then click Next to proceed with the verification step. You’re now allowed to choose a new password.
[image:]
7. Enter a new password and confirm it. The password will be validated based on the password policy of the tenant, and a strength validator appears to indicate to the user whether the password entered meets that policy.
[image:]
8. Click Finish. Once you provide matching passwords that meet the organizational policy, your password is reset and you can log in with your new password immediately.
[image:]
A password rest notification mail is sent in parallel to the verified email account.
9. Click click here to sign in. You’re redirected to the local account sign-in page.
[image:]
10. Enter your new credentials and click Sign in. You should now be able to sign in.
[bookmark: _Toc454545288]Collecting additional information during sign-up
As mentioned before, you can collect additional information from the user during sign-up in addition to standard built-in B2C tenant attributes.
To do that you first have to create custom attributes and then use them in your policies.
Note	Custom attributes use Azure AD Graph API Directory schema extensions under the hood. For additional information, see the eponym MSDN article AZURE AD GRAPH API DIRECTORY SCHEMA EXTENSIONS[footnoteRef:97]. [97: AZURE AD GRAPH API DIRECTORY SCHEMA EXTENSIONS: https://msdn.microsoft.com/library/azure/dn720459.aspx]

Note	For additional information, see the article AZURE ACTIVE DIRECTORY B2C PREVIEW: USE CUSTOM ATTRIBUTES TO COLLECT INFORMATION ABOUT YOUR CONSUMERS[footnoteRef:98]. [98: AZURE ACTIVE DIRECTORY B2C PREVIEW: USE CUSTOM ATTRIBUTES TO COLLECT INFORMATION ABOUT YOUR CONSUMERS: https://azure.microsoft.com/en-us/documentation/articles/active-directory-b2c-reference-custom-attr/]

Adding a custom user attribute to the B2C tenant
To create a custom user attribute, proceed with the following steps:
1. Switch back to the B2C features blade or navigate to the related URL (see above).
2. On the B2C features blade, click User attributes.
[image:]
3. Click +Add at the top of the blade. An Add an attribute blade opens up.
[image:]
4. In Name, provide a name (without any space and special character) for the custom user attribute. For example, in our illustration, type in "LoyaltyNumber".
5. Leave Data type as String. This is the only supported type at this writing.
6. Click Create.
[image:]
7. Close the blade just opened, and leave the B2C features blade open.
Using the custom user attribute in a sign-up policy
To use the newly created custom user attribute, proceed with the following steps:
1. Switch back to the B2C features blade or navigate to the related URL (see above).
2. On the B2C features blade, click Sign-up policies.
3. Open the B2C_1_B2CSignUp sign-up policy and click Edit at the top of the blade.
4. Click Sign-up attributes and select the above LoyaltyNumber custom attribute. Click OK.
5. Click Application claims and select the above LoyaltyNumber custom attribute. Click OK.
6. Click Save at the top of the blade.
You should now see LoyaltyNumber in the list of attributes being collected during consumer sign-up and see it in the token sent back to your application.
This concludes our walkthrough on Azure AD B2C. We hope that this gives you an idea of the power of Azure AD B2C whilst for the sake of brevity, it only scratches the surface of the possibilities.
[bookmark: _Ref430683874][bookmark: _Toc454545289]A sneak peak of what’s coming next
As previously outlined, Microsoft has already worked with a number of developers to build consumer-facing applications using Azure AD B2C as part of a private preview program before the current public preview.
This has enable to gather a backlog of features[footnoteRef:99]: [99: AZURE AD B2C AND B2B ARE NOW IN PUBLIC PREVIEW!: http://blogs.technet.com/b/ad/archive/2015/09/16/azure-ad-b2c-and-b2b-are-now-in-public-preview.aspx]

1. Support for custom identity providers. This would be the ability to, say, add an arbitrary OpenID Connect 1.0 or SAML 2.0 identity provider to the B2C tenant.
2. Full UI customization for the for user experiences and not just the aforementioned HTML5/CSS customization (see section CUSTOMIZING THE OVERALL USER EXPERIENCE), but also the ability to have your URL appear in the browser for every page rendered by Azure AD B2C. That will remove the last visible remnant of Microsoft from the user experiences.
3. Localization. If you have users all over the world speaking many languages, sign-up, sign-in, and other pages need to render appropriately using strings you provide in the languages you want to support.
4. A hook at the end of sign up. A number of people have said they want the ability to check a user who is signing up against a record in a different system. A little hook at the end of sign up would allow them to do this.
5. A variety of predefined reports, as the ones available in Azure AD so that you can review the activity in your B2C tenant at a glance and without having to write code to call an audit log API.
6. Etc.
The above is just a fraction of the list… Towards the path to GA, you can track the progress made by following the Azure AD B2C documentation[footnoteRef:100]. [100: AZURE ACTIVE DIRECTORY B2C: http://azure.microsoft.com/en-us/documentation/services/active-directory-b2c/]

One can also expect a Premium edition in the future with even more advanced capabilities. Stay tuned ;-)

This also concludes the Azure AD B2C overview.
	The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This white paper is for informational purposes only. Microsoft makes no warranties, express or implied, in this document.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
© 2016 Microsoft Corporation. All rights reserved.
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
Microsoft, list Microsoft trademarks used in your white paper alphabetically are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

	
21 An overview of Azure Active Directory B2C
image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image2.emf

image3.emf

image4.emf

image5.png

image6.emf
Azure AD B2C Basic previewlogin.microsoftonline.com(tenant-specific endpoints per policy)OAuth 2.0 authorization endpointOAuth 2.0 token endpointOpenID Connect 1.0 provider configuration information endpointOAuth 2.0 logout endpointJWK document endpoint

image7.png

image8.emf

image9.png

image10.png

image11.png

image1.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image100.png

